scholarly journals Reinforcement Learning for Routing in Cognitive Radio Ad Hoc Networks

2014 ◽  
Vol 2014 ◽  
pp. 1-22 ◽  
Author(s):  
Hasan A. A. Al-Rawi ◽  
Kok-Lim Alvin Yau ◽  
Hafizal Mohamad ◽  
Nordin Ramli ◽  
Wahidah Hashim

Cognitive radio (CR) enables unlicensed users (or secondary users, SUs) to sense for and exploit underutilized licensed spectrum owned by the licensed users (or primary users, PUs). Reinforcement learning (RL) is an artificial intelligence approach that enables a node to observe, learn, and make appropriate decisions on action selection in order to maximize network performance. Routing enables a source node to search for a least-cost route to its destination node. While there have been increasing efforts to enhance the traditional RL approach for routing in wireless networks, this research area remains largely unexplored in the domain of routing in CR networks. This paper applies RL in routing and investigates the effects of various features of RL (i.e., reward function, exploitation, and exploration, as well as learning rate) through simulation. New approaches and recommendations are proposed to enhance the features in order to improve the network performance brought about by RL to routing. Simulation results show that the RL parameters of the reward function, exploitation, and exploration, as well as learning rate, must be well regulated, and the new approaches proposed in this paper improves SUs’ network performance without significantly jeopardizing PUs’ network performance, specifically SUs’ interference to PUs.

Author(s):  
Miguel Tuberquia ◽  
Cesar Hernandez

Cognitive radio has claimed a promising technology to exploit the spectrum in an ad hoc network. Due many techniques have become a topic of discussion on cognitive radios, the aim of this paper was developed a contemporary survey of evolutionary algorithms in Cognitive Radio. According to the art state, this work had been collected the essential contributions of cognitive radios with the particularity of base they research in evolutionary algorithms. The main idea was classified the evolutionary algorithms and showed their fundamental approaches. Moreover, this research will be exposed some of the current issues in cognitive radios and how the evolutionary algorithms will have been contributed. Therefore, current technologies have matters presented in optimization, learning, and classification over cognitive radios where evolutionary algorithms can be presented big approaches. With a more comprehensive and systematic understanding of evolutionary algorithms in cognitive radios, more research in this direction may be motivated and refined.


Author(s):  
FREDERICK DUCATELLE ◽  
GIANNI DI CARO ◽  
LUCA MARIA GAMBARDELLA

This paper describes AntHocNet, an algorithm for routing in mobile ad-hoc networks based on ideas from the ant colony optimisation framework. In AntHocNet a source node reactively sets up a path to a destination node at the start of each communication session. During the course of the session, the source node uses ant agents to proactively search for alternatives and improvements of the original path. This allows to adapt to changes in the network, and to construct a mesh of alternative paths between source and destination. The proactive behaviour is supported by a lightweight information bootstrapping process. Paths are represented in the form of distance-vector routing tables called pheromone tables. An entry of a pheromone table contains the estimated goodness of going over a certain neighbour to reach a certain destination. Data are routed stochastically over the different paths of the mesh according to these goodness estimates. In an extensive set of simulation tests, we compare AntHocNet to AODV, a reactive algorithm which is an important reference in this research area. We show that AntHocNet can outperform AODV for different evaluation criteria in a wide range of different scenarios. AntHocNet is also shown to scale well with respect to the number of nodes.


Author(s):  
Johan Ferret ◽  
Raphael Marinier ◽  
Matthieu Geist ◽  
Olivier Pietquin

The ability to transfer knowledge to novel environments and tasks is a sensible desiderata for general learning agents. Despite the apparent promises, transfer in RL is still an open and little exploited research area. In this paper, we take a brand-new perspective about transfer: we suggest that the ability to assign credit unveils structural invariants in the tasks that can be transferred to make RL more sample-efficient. Our main contribution is SECRET, a novel approach to transfer learning for RL that uses a backward-view credit assignment mechanism based on a self-attentive architecture. Two aspects are key to its generality: it learns to assign credit as a separate offline supervised process and exclusively modifies the reward function. Consequently, it can be supplemented by transfer methods that do not modify the reward function and it can be plugged on top of any RL algorithm.


2020 ◽  
Vol 14 (19) ◽  
pp. 3464-3471
Author(s):  
Raghavendra Pal ◽  
Nishu Gupta ◽  
Arun Prakash ◽  
Rajeev Tripathi ◽  
Joel J. P. C. Rodrigues

Author(s):  
Ruchi Makani ◽  
Busi V. Ramana Reddy

Background & Objective:: In past few years, Cognitive Radio (CR) paradigm has emerged as a promising and revolutionary solution to avoid problems of spectrum paucity and inefficiency in spectrum usage. Efficiently utilization of the spectrum offers high network performance. CRs are proficient to identify and adopt the unused spectrum in order to allow secondary users to occupy it without interfering the primary user’s activity. Cognitive Internet on Things (CIoT) is an integration of several technologies and communication solutions which can be effectively realized as Cognitive Radio Adhoc Networks (CRAHN). In CRANH, on-demand routing protocols are the best suitable protocols due to their dynamic feature of available un-utilized channel/spectrum selection. Methods: Here, firstly, Ad-Hoc On-Demand Distance Vector (AODV) routing protocol has been modified and further evaluated to address route selection challenges in CIoT framework. Secondly, the effects on network performance under network layer routing attacks (i.e. blackhole attack, byzantine attack and flooding attacks) are evaluated. Conclusion: The simulations results demonstrate network performance increase with more channels and degrade differently under attacks.


Sign in / Sign up

Export Citation Format

Share Document