scholarly journals Adaptive Sliding Mode Control Method Based on Nonlinear Integral Sliding Surface for Agricultural Vehicle Steering Control

2014 ◽  
Vol 2014 ◽  
pp. 1-10 ◽  
Author(s):  
Taochang Li ◽  
Jingtao Hu

Automatic steering control is the key factor and essential condition in the realization of the automatic navigation control of agricultural vehicles. In order to get satisfactory steering control performance, an adaptive sliding mode control method based on a nonlinear integral sliding surface is proposed in this paper for agricultural vehicle steering control. First, the vehicle steering system is modeled as a second-order mathematic model; the system uncertainties and unmodeled dynamics as well as the external disturbances are regarded as the equivalent disturbances satisfying a certain boundary. Second, a transient process of the desired system response is constructed in each navigation control period. Based on the transient process, a nonlinear integral sliding surface is designed. Then the corresponding sliding mode control law is proposed to guarantee the fast response characteristics with no overshoot in the closed-loop steering control system. Meanwhile, the switching gain of sliding mode control is adaptively adjusted to alleviate the control input chattering by using the fuzzy control method. Finally, the effectiveness and the superiority of the proposed method are verified by a series of simulation and actual steering control experiments.

Author(s):  
J. Fei ◽  
Celel Batur

This paper presents an adaptive tracking controller with a proportional and integral switching surface. A new adaptive sliding mode controller based on model reference adaptive state feedback control is proposed to deal with the tracking problem for a class of linear dynamic systems. First, a proportional and integral sliding surface instead of a conventional sliding surface is chosen and then an adaptive sliding mode controller is derived and its stability is proved. It is shown that the stability of the closed-loop system can be guaranteed with the proposed adaptive sliding mode control strategy. The adaptive design is extended to the multiple inputs system. The numerical simulation is investigated to show the effectiveness of the proposed adaptive sliding mode control scheme with proportional plus integral sliding mode action.


Author(s):  
J Fei ◽  
C Batur

This paper presents an adaptive sliding mode tracking controller with a proportional and integral switching surface. A novel adaptive sliding mode controller based on model reference adaptive state feedback control is proposed to deal with the tracking problem for a class of dynamic systems. First, a proportional and integral sliding surface instead of a conventional sliding surface is chosen and then a class of adaptive sliding mode controller with integral sliding term is developed. It is shown that the stability of the closed-loop system can be guaranteed with the proposed adaptive sliding mode control strategy. The numerical simulation of a triaxial gyroscope is investigated to show the effectiveness of the proposed adaptive sliding mode control scheme with proportional plus integral sliding mode action.


Author(s):  
D W Qian ◽  
X J Liu ◽  
J Q Yi

Based on the sliding mode control methodology, this paper presents a robust control strategy for underactuated systems with mismatched uncertainties. The system consists of a nominal system and the mismatched uncertainties. Since the nominal system can be considered to be made up of several subsystems, a hierarchical structure for the sliding surfaces is designed. This is achieved by taking the sliding surface of one of the subsystems as the first-layer sliding surface and using this sliding surface and the sliding surface of another subsystem to construct the second-layer sliding surface. This process continues till the sliding surfaces of all the subsystems are included. A lumped sliding mode compensator is designed at the last-layer sliding surface. The asymptotic stability of all of the layer sliding surfaces and the sliding surface of each subsystem is proven. Simulation results show the validity of this robust control method through stabilization control of a system consisting of two inverted pendulums and mismatched uncertainties.


2016 ◽  
Vol 829 ◽  
pp. 128-132 ◽  
Author(s):  
Van Van Huynh ◽  
Minh Hoang Quang Tran

In this paper, a new integral sliding mode control scheme is designed for the 3-pole active magnetic bearing system. First, a new integral sliding surface is designed such that the 3-pole active magnetic bearing system in the sliding mode is asymptotically stable under certain conditions. Then, an adaptive controller is designed to solve the unknown upper bound of matched uncertainty and guarantee the reachability of the integral sliding surface. Finally, the performance of the proposed integral sliding mode controller is applied to 3-pole active magnetic bearing system to demonstrate the efficacy of the proposed method.


2018 ◽  
Vol 41 (7) ◽  
pp. 1880-1887
Author(s):  
Yonghui Liu

The problem of adaptive sliding mode control is considered for a class of stochastic switched systems with actuator degradation. In this work, the input matrix for each subsystem is unnecessarily the same. Thus, a weighted sum approach of the input matrices is introduced such that a common sliding surface is designed. By online estimating the loss of effectiveness of the actuators, an adaptive sliding mode controller is designed. It can not only compensate the effect of the actuator degradation effectively, but also reduce the conservatism that the bound of the actuator faults should be known in advance. Moreover, it is shown that the reachability of the sliding surface can be guaranteed. Furthermore, sufficient conditions on the mean-square exponential stability of the sliding mode dynamics are obtained via the average dwell time method. Finally, a numerical simulation example is given to demonstrate the effectiveness of the proposed method.


2020 ◽  
Vol 10 (14) ◽  
pp. 4779 ◽  
Author(s):  
Cheng Lu ◽  
Liang Hua ◽  
Xinsong Zhang ◽  
Huiming Wang ◽  
Yunxiang Guo

This paper investigates one kind of high performance control methods for Micro-Electro-Mechanical-System (MEMS) gyroscopes using adaptive sliding mode control (ASMC) scheme with prescribed performance. Prescribed performance control (PPC) method is combined with conventional ASMC method to provide quantitative analysis of gyroscope tracking error performances in terms of specified tracking error bound and specified error convergence rate. The new derived adaptive prescribed performance sliding mode control (APPSMC) can maintain a satisfactory control performance which guarantees system tracking error, at any time, to be within a predefined error bound and the error convergences faster than the error bound. Besides, adaptive control (AC) technique is integrated with PPC to online tune controller parameters, which will converge to their true values at last. The stability of the control system is proved in the Lyapunov stability framework and simulation results on a Z-axis MEMS gyroscope is conducted to validate the effectiveness of the proposed control approach.


2013 ◽  
Vol 321-324 ◽  
pp. 1704-1707
Author(s):  
Qing Hu ◽  
Hong Bin Du ◽  
Dong Mei Yu

For external disturbances and parameter perturbation problem of Electromagnetic guiding system, the adaptive sliding mode control method is used, take advantage of sliding mode switching surface eliminate the steady-state error and increase the precision at steady-state and robust performance of single electromagnetic guiding system. Matlab Simulation results show that the proposed control strategy shows good tracking performance and strong robustness


2016 ◽  
Vol 829 ◽  
pp. 123-127
Author(s):  
Van Van Huynh ◽  
Thao Phuong Thi Nguyen

In this paper, a new sliding mode control law is developed for a class of mismatched uncertain systems with more general exogenous disturbances. First, we derive a new existence condition of linear sliding surface in terms of strict linear matrix inequalities such that the reduce-order sliding mode dynamics is is asymptotically stable. Second, we propose an adaptive sliding mode control law such that the system states reach the sliding surface in finite time and stay on its thereafter. Final, a numerical example is used to demonstrate the efficacy of the proposed method.


Sign in / Sign up

Export Citation Format

Share Document