scholarly journals Omega-3 Fatty Acids in Early Prevention of Inflammatory Neurodegenerative Disease: A Focus on Alzheimer’s Disease

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
J. Thomas ◽  
C. J. Thomas ◽  
J. Radcliffe ◽  
C. Itsiopoulos

Alzheimer’s disease (AD) is the leading cause of dementia and the most common neurodegenerative disease in the elderly. Furthermore, AD has provided the most positive indication to support the fact that inflammation contributes to neurodegenerative disease. The exact etiology of AD is unknown, but environmental and genetic factors are thought to contribute, such as advancing age, family history, presence of chronic diseases such as cardiovascular disease (CVD) and diabetes, and poor diet and lifestyle. It is hypothesised that early prevention or management of inflammation could delay the onset or reduce the symptoms of AD. Normal physiological changes to the brain with ageing include depletion of long chain omega-3 fatty acids and brains of AD patients have lower docosahexaenoic acid (DHA) levels. DHA supplementation can reduce markers of inflammation. This review specifically focusses on the evidence in humans from epidemiological, dietary intervention, and supplementation studies, which supports the role of long chain omega-3 fatty acids in the prevention or delay of cognitive decline in AD in its early stages. Longer term trials with long chain omega-3 supplementation in early stage AD are warranted. We also highlight the importance of overall quality and composition of the diet to protect against AD and dementia.

Author(s):  
Amy H. R. Wood ◽  
Helen F. Chappell ◽  
Michael A. Zulyniak

Abstract Purpose There is an ever-growing body of literature examining the relationship between dietary omega-3 polyunsaturated fatty acids (ω3 PUFAs) and cerebral structure and function throughout life. In light of this, the use of ω3 PUFAs, namely, long-chain (LC) ω3 PUFAs (i.e., eicosapentaenoic acid and docosahexaenoic acid), as a therapeutic strategy to mitigate cognitive impairment, and progression to Alzheimer’s disease is an attractive prospect. This review aims to summarise evidence reported by observational studies and clinical trials that investigated the role of LC ω3 PUFAs against cognition impairment and future risk of Alzheimer’s disease. Methods Studies were identified in PubMed and Scopus using the search terms “omega-3 fatty acids”, “Alzheimer’s disease” and “cognition”, along with common variants. Inclusion criteria included observational or randomised controlled trials (RCTs) with all participants aged ≥ 50 years that reported on the association between LC ω3 PUFAs and cognitive function or biological markers indicative of cognitive function linked to Alzheimer’s disease. Results Evidence from 33 studies suggests that dietary and supplemental LC ω3 PUFAs have a protective effect against cognitive impairment. Synaptic plasticity, neuronal membrane fluidity, neuroinflammation, and changes in expression of genes linked to cognitive decline have been identified as potential targets of LC ω3 PUFAs. The protective effects LC ω3 PUFAs on cognitive function and reduced risk of Alzheimer’s disease were supported by both observational studies and RCTs, with RCTs suggesting a more pronounced effect in individuals with early and mild cognitive impairment. Conclusion The findings of this review suggest that individuals consuming higher amounts of LC ω3 PUFAs are less likely to develop cognitive impairment and that, as a preventative strategy against Alzheimer’s disease, it is most effective when dietary LC ω3 PUFAs are consumed prior to or in the early stages of cognitive decline.


Nutrients ◽  
2020 ◽  
Vol 12 (12) ◽  
pp. 3765
Author(s):  
Virginie Bottero ◽  
Judith A. Potashkin

Background: The Mediterranean diet, which is rich in olive oil, nuts, and fish, is considered healthy and may reduce the risk of chronic diseases. Methods: Here, we compared the transcriptome from the blood of subjects with diets supplemented with olives, nuts, or long-chain omega-3 fatty acids and identified the genes differentially expressed. The dietary genes obtained were subjected to network analysis to determine the main pathways, as well as the transcription factors and microRNA interaction networks to elucidate their regulation. Finally, a gene-associated disease interaction network was performed. Results: We identified several genes whose expression is altered after the intake of components of the Mediterranean diets compared to controls. These genes were associated with infection and inflammation. Transcription factors and miRNAs were identified as potential regulators of the dietary genes. Interestingly, caspase 1 and sialophorin are differentially expressed in the opposite direction after the intake of supplements compared to Alzheimer’s disease patients. In addition, ten transcription factors were identified that regulated gene expression in supplemented diets, mild cognitive impairment, and Alzheimer’s disease. Conclusions: We identified genes whose expression is altered after the intake of the supplements as well as the transcription factors and miRNAs involved in their regulation. These genes are associated with schizophrenia, neoplasms, and rheumatic arthritis, suggesting that the Mediterranean diet may be beneficial in reducing these diseases. In addition, the results suggest that the Mediterranean diet may also be beneficial in reducing the risk of dementia.


2013 ◽  
Vol 38 (1) ◽  
pp. 111-120 ◽  
Author(s):  
Lynne Shinto ◽  
Joseph Quinn ◽  
Thomas Montine ◽  
Hiroko H. Dodge ◽  
William Woodward ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document