scholarly journals Structural Optimization of Ship Lock Heads during Construction Period considering Concrete Creep

2020 ◽  
Vol 2020 ◽  
pp. 1-17
Author(s):  
Chao Su ◽  
Jiawei Bai

Traditional structural optimization is mainly based on the assumption that the materials are elastic, which cannot represent real stress fields in structures. In this study, the genetic algorithm, big bang-big crunch algorithm, and hybrid big bang-big crunch algorithm were employed to optimize the design factors of ship lock heads during concrete construction. The optimization goal was to determine the minimum volume of concrete. The factors considered included the hydration heat, the early-stage creep, and the transient deformation under external loads. In the finite element analysis, three types of boundary conditions were considered. The whole construction process was simulated, and the maximum tensile and compressive stresses, the stability, and the overturning of the lock head were examined. Based on the finite element analysis, to reduce the consumption of memory, a set of implicit recursive equations were used to calculate the thermal creep stress. Thirty-four design variables were distinguished for optimization. A case study on the optimization of a ship lock head was used to demonstrate the optimization process. The optimization results showed that the hybrid big bang-big crunch algorithm was more effective, and some conclusions were derived.

2012 ◽  
Vol 184-185 ◽  
pp. 534-537
Author(s):  
Jing Jing Zhou ◽  
Ai Dong Guo ◽  
Chun Hui Li ◽  
Zhen Jiang Lin ◽  
Tie Zhuang Wu

By setting contact sets, achieved overall analysis results of the mechanical properties with omni-direction side-loading forklift truck lifting system based on COSMOSWorks. And made an experimental measurements to omni-direction side-loading forklift truck lifting system by electrometric methods. There was a good relevance between experimental data and calculation values, and the deviation was basically within the 10 percent allowed. Finally, in this way it verified the correctness and reliability of the finite element analysis by experimental measurements. Ensured the omni-direction side-loading forklift truck lifting system could be safe and efficient to work. And also it laid a foundation for subsequent structural optimization.


2013 ◽  
Vol 561 ◽  
pp. 25-29 ◽  
Author(s):  
Ying Yu ◽  
Jia Wang ◽  
Yu Guang Gong ◽  
Bai Yuan Lv

In this paper, Φ120 rubber sheeting extruder is used as an example, It analyses reversely die shape through a given product shape, analyses the distributions of the velocity field and pressure field by POLYFLOW, and carries out the finite element analysis and structural optimization design of head runner.


2015 ◽  
Vol 2015 ◽  
pp. 1-14
Author(s):  
Mohammad Kurdi

This work describes the development of a structural optimization framework adept at accommodating diverse customer requirements. The purpose is to provide a framework accessible to the optimization research analyst. The framework integrates the method of moving asymptotes into the finite element analysis program (FEAP) by exploiting the direct interface capability in FEAP. Analytic sensitivities are incorporated to provide a robust and efficient optimization search. User macros are developed to interface the design algorithm and analytic sensitivity with the finite element analysis program. To test the optimization tool and sensitivity calculations, three sizing and one topology optimization problems are considered. In addition, flutter analysis of a heated panel is analyzed as an example of coupling to nonstructural discipline. In sizing optimization, the calculated semianalytic sensitivities match analytic and finite difference calculations. Differences between analytic designs and numerical ones are less than 2.0% and are attributed to discrete nature of finite elements. In the topology problem, quadratic elements are found robust at resolving checkerboard patterns.


1985 ◽  
Vol 13 (3) ◽  
pp. 127-146 ◽  
Author(s):  
R. Prabhakaran

Abstract The finite element method, which is a numerical discretization technique for obtaining approximate solutions to complex physical problems, is accepted in many industries as the primary tool for structural analysis. Computer graphics is an essential ingredient of the finite element analysis process. The use of interactive graphics techniques for analysis of tires is discussed in this presentation. The features and capabilities of the program used for pre- and post-processing for finite element analysis at GenCorp are included.


2007 ◽  
Vol 35 (3) ◽  
pp. 226-238 ◽  
Author(s):  
K. M. Jeong ◽  
K. W. Kim ◽  
H. G. Beom ◽  
J. U. Park

Abstract The effects of variations in stiffness and geometry on the nonuniformity of tires are investigated by using the finite element analysis. In order to evaluate tire uniformity, a three-dimensional finite element model of the tire with imperfections is developed. This paper considers how imperfections, such as variations in stiffness or geometry and run-out, contribute to detrimental effects on tire nonuniformity. It is found that the radial force variation of a tire with imperfections depends strongly on the geometrical variations of the tire.


2018 ◽  
Vol 55 (4) ◽  
pp. 666-675
Author(s):  
Mihaela Tanase ◽  
Dan Florin Nitoi ◽  
Marina Melescanu Imre ◽  
Dorin Ionescu ◽  
Laura Raducu ◽  
...  

The purpose of this study was to determinate , using the Finite Element Analysis Method, the mechanical stress in a solid body , temporary molar restored with the self-curing GC material. The originality of our study consisted in using an accurate structural model and applying a concentrated force and a uniformly distributed pressure. Molar structure was meshed in a Solid Type 45 and the output data were obtained using the ANSYS software. The practical predictions can be made about the behavior of different restorations materials.


2013 ◽  
Vol 83 (7) ◽  
pp. 1087-1096 ◽  
Author(s):  
A. Ranjbaran ◽  
H. Rousta ◽  
M. O. Ranjbaran ◽  
M. A. Ranjbaran ◽  
M. Hashemi ◽  
...  

2012 ◽  
Vol 24 (3) ◽  
pp. 326-333 ◽  
Author(s):  
Yu-Chi Chen ◽  
Wen-Ching Ko ◽  
Han-Lung Chen ◽  
Hsu-Ching Liao ◽  
Wen-Jong Wu ◽  
...  

We propose a model to give us a method to investigate the characteristic three-dimensional directivity in an arbitrarily configured flexible electret-based loudspeaker. In recent years, novel electret loudspeakers have attracted much interest due to their being lightweight, paper thin, and possessing excellent mid- to high-frequency responses. Increasing or decreasing the directivity of an electret loudspeaker makes it excellent for adoption to many applications, especially for directing sound to a particular area or specific audio location. Herein, we detail a novel electret loudspeaker that possesses various directivities and is based on various structures of spacers instead of having to use multichannel amplifiers and a complicated digital control system. In order to study the directivity of an electret loudspeaker based on an array structure which can be adopted for various applications, the horizontal and vertical polar directivity characteristics as a function of frequency were simulated by a finite-element analysis model. To validate the finite-element analysis model, the beam pattern of the electret loudspeaker was measured in an anechoic room. Both the simulated and experimental results are detailed in this article to validate the various assertions related to the directivity of electret cell-based smart speakers.


Sign in / Sign up

Export Citation Format

Share Document