scholarly journals Wharton’s Jelly Derived Mesenchymal Stem Cells: Future of Regenerative Medicine? Recent Findings and Clinical Significance

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Ilona Kalaszczynska ◽  
Katarzyna Ferdyn

Around 5 million annual births in EU and 131 million worldwide give a unique opportunity to collect lifesaving Wharton’s jelly derived mesenchymal stem cells (WJ-MSC). Evidences that these cells possess therapeutic properties are constantly accumulating. Collection of WJ-MSC is done at the time of delivery and it is easy and devoid of side effects associated with collection of adult stem cells from bone marrow or adipose tissue. Likewise, their rate of proliferation, immune privileged status, lack of ethical concerns, nontumorigenic properties make them ideal for both autologous and allogeneic use in regenerative medicine applications. This review provides an outline of the recent findings related to WJ-MSC therapeutic effects and possible advantage they possess over MSC from other sources. Results of first clinical trials conducted to treat immune disorders are highlighted.

2019 ◽  
Vol 20 (18) ◽  
pp. 4632 ◽  
Author(s):  
Musiał-Wysocka ◽  
Kot ◽  
Sułkowski ◽  
Majka

In recent years, mesenchymal stem cells (MSCs) have emerged as a promising therapeutic modality in regenerative medicine. They hold great promise for treating civilization-wide diseases, including cardiovascular diseases, such as acute myocardial infarction and critical limb ischemia. MSCs isolated from Wharton’s jelly (WJ-MSCs) may be utilized in both cell-based therapy and vascular graft engineering to restore vascular function, thereby providing therapeutic benefits for patients. The efficacy of WJ-MSCs lies in their multipotent differentiation ability toward vascular smooth muscle cells, endothelial cells and other cell types, as well as their capacity to secrete various trophic factors, which are potent in promoting angiogenesis, inhibiting apoptosis and modulating immunoreaction. Ischemic limb disease is caused by insufficient nutrient and oxygen supplies resulting from damaged peripheral arteries. The lack of nutrients and oxygen causes severe tissue damage in the limb, thereby resulting in severe morbidities and mortality. The therapeutic effects of the conventional treatments are still not sufficient. Cell transplantations in small animal model (mice) are vital for deciphering the mechanisms of MSCs’ action in muscle regeneration. The stimulation of angiogenesis is a promising strategy for the treatment of ischemic limbs, restoring blood supply for the ischemic region. In the present study, we focus on the therapeutic properties of the human WJ-MSCs derived product, Cardio. We investigated the role of CardioCell in promoting angiogenesis and relieving hindlimb ischemia. Our results confirm the healing effect of CardioCell and strongly support the use of the WJ-MSCs in regenerative medicine.


2020 ◽  
Vol 21 (17) ◽  
pp. 6269
Author(s):  
Alee Choi ◽  
Sang Eon Park ◽  
Jang Bin Jeong ◽  
Suk-joo Choi ◽  
Soo-young Oh ◽  
...  

Extracellular matrix (ECM) components play an important role in maintaining skeletal muscle function, but excessive accumulation of ECM components interferes with skeletal muscle regeneration after injury, eventually inducing fibrosis. Increased oxidative stress level caused by dystrophin deficiency is a key factor in fibrosis in Duchenne muscular dystrophy (DMD) patients. Mesenchymal stem cells (MSCs) are considered a promising therapeutic agent for various diseases involving fibrosis. In particular, the paracrine factors secreted by MSCs play an important role in the therapeutic effects of MSCs. In this study, we investigated the effects of MSCs on skeletal muscle fibrosis. In 2–5-month-old mdx mice intravenously injected with 1 × 105 Wharton’s jelly (WJ)-derived MSCs (WJ-MSCs), fibrosis intensity and accumulation of calcium/necrotic fibers were significantly decreased. To elucidate the mechanism of this effect, we verified the effect of WJ-MSCs in a hydrogen peroxide-induced fibrosis myotubes model. In addition, we demonstrated that matrix metalloproteinase-1 (MMP-1), a paracrine factor, is critical for this anti-fibrotic effect of WJ-MSCs. These findings demonstrate that WJ-MSCs exert anti-fibrotic effects against skeletal muscle fibrosis, primarily via MMP-1, indicating a novel target for the treatment of muscle diseases, such as DMD.


2019 ◽  
Vol 9 (3) ◽  
pp. 497-504 ◽  
Author(s):  
Homa Salami ◽  
Seyed Javad Mowal ◽  
Rasoul Moukhah ◽  
Zahra Hajebrahimi ◽  
Seyed Abdolhakim Hosseini ◽  
...  

Purpose: The histone deacetylases (HDAC) inhibitor, valproic acid (VPA), is a common antiepileptic drug and is attractive for its broad range of therapeutic effects on many diseases. It has been employed as an inducer of pluripotency in some cultured cells. Conversely, VPA has also been employed as an inducer of in vitro differentiation in many other cells. Therefore, we employed WJMSCs as a cellular target to evaluate the differential effects of of VPA on potency state and differentiation level of Wharton’s Jelly mesenchymal stem cells (WJMSCs) in various concentrations and different culture mediums. Methods: The isolated WJMSCs were cultured in DMEM (MSC medium). According to previous protocols, WJMSCs were treated with 0, 0.5 and 1 mM VPA in MSC or embryonic stem cell (ESC) medium and 2 mM VPA in neural differentiation medium. Real-time polymerase chain reaction (PCR) and western blot analysis were performed for evaluating the expression of pluripotency markers. MTT and caspase assays were also performed on VPA-treated cells. Results: The expression of pluripotency markers and the viability of the WJMSCs – determined by MTT assay – were significantly increased after 0.5 mM VPA treatment in ESC medium. A 2 mM VPA treatment in neural differentiation medium significantly diminished the expression of pluripotency markers and the viability of WJMSCs. Conclusion: According to our results, both VPA concentration and the medium context can influence VPA effects on WJMSCs. The differential effects of VPA on WJMSCs can reflect its wide range of effects in the treatment of various diseases.


2021 ◽  
Vol 22 (2) ◽  
pp. 763
Author(s):  
Vitale Miceli ◽  
Matteo Bulati ◽  
Gioacchin Iannolo ◽  
Giovanni Zito ◽  
Alessia Gallo ◽  
...  

Mesenchymal stromal/stem cells (MSCs) are multipotent adult stem cells that support homeostasis during tissue regeneration. In the last decade, cell therapies based on the use of MSCs have emerged as a promising strategy in the field of regenerative medicine. Although these cells possess robust therapeutic properties that can be applied in the treatment of different diseases, variables in preclinical and clinical trials lead to inconsistent outcomes. MSC therapeutic effects result from the secretion of bioactive molecules affected by either local microenvironment or MSC culture conditions. Hence, MSC paracrine action is currently being explored in several clinical settings either using a conditioned medium (CM) or MSC-derived exosomes (EXOs), where these products modulate tissue responses in different types of injuries. In this scenario, MSC paracrine mechanisms provide a promising framework for enhancing MSC therapeutic benefits, where the composition of secretome can be modulated by priming of the MSCs. In this review, we examine the literature on the priming of MSCs as a tool to enhance their therapeutic properties applicable to the main processes involved in tissue regeneration, including the reduction of fibrosis, the immunomodulation, the stimulation of angiogenesis, and the stimulation of resident progenitor cells, thereby providing new insights for the therapeutic use of MSCs-derived products.


2021 ◽  
Author(s):  
Ayaz Ali ◽  
Wei-Wen Kuo ◽  
Chia-Hua Kuo ◽  
Jeng-Feng Lo ◽  
Ray-Jade Chen ◽  
...  

Abstract BackgroundRecent studies indicate that umbilical cord stem cells are cytoprotective against several disorders. One critical limitation in using stem cells is reduction in their viability under stressful conditions, such as diabetes. However, the molecular intricacies responsible for diabetic conditions are not fully elucidated.MethodsEffects of HG on Wharton's jelly derived mesenchymal stem cells (WJMSCs) viability was evaluated by MTT assay and flow cytometry. The mechanism responsible for HG-induced PTEN degradation was assessed using loss and gain of function, immunofluorescence, co-immunoprecipitation, and western blot analysis. Co-culturing of CHIP-overexpressed WJMSCs with embryo derived cardiomyoblasts was performed to analyze their ameliorative effects. The therapeutic effects of CHIP expressing WJMSCs were further validated in Sprague Dawley male (eight weeks old) STZ-induced diabetic animals by echocardiography, immunohistochemistry, hematoxylin eosin, and masson’s trichrome and TUNEL staining. Multiple comparisons were accessed through one‐way ANOVA and p-Value of <0.05 was considered statistically significant. ResultsIn this study, we found that high glucose (HG) conditions induced loss of chaperone homeostasis, stabilized PTEN, triggered the downstream signaling cascade, and induced apoptosis and oxidative stress in Wharton's jelly derived mesenchymal stem cells (WJMSCs). Increased CHIP expression promoted PTEN degradation via the ubiquitin-proteasome system and shortened its half-life during HG stress. Docking studies confirmed the interaction of CHIP with PTEN and FOXO3a with the Bim promoter region. Further, it was found that the chaperone system is involved in CHIP-mediated PTEN proteasomal degradation. CHIP depletion stabilizes PTEN whereas PTEN inhibition showed an inverse effect. CHIP overactivation suppressed the binding of FOXO3a with bim. Co-culturing CHIP overexpressed WJMSCs suppressed HG-induced apoptosis and oxidative stress in cardiac cells. Finally, CHIP overexpression and PTEN inhibition minimized blood glucose levels, improved body and heart weight, and rescued hyperglycemia-induced cardiac injury in diabetic rats. ConclusionThe current study suggests that CHIP confers resistance to apoptosis and oxidative stress and modulates PTEN and the downstream signaling cascade by promoting PTEN proteasomal degradation, thereby potentially exerting therapeutic effects against diabetes-induced cardiomyopathies.


Author(s):  
Malgorzata Witkowska-Zimny ◽  
Edyta Wrobel

AbstractRecently, stem cell biology has become an interesting topic, especially in the context of treating diseases and injuries using transplantation therapy. Several varieties of human stem cells have been isolated and identified in vivo and in vitro. Ideally, stem cells for regenerative medical application should be found in abundant quantities, harvestable in a minimally invasive procedure, then safely and effectively transplanted to either an autologous or allogenic host. The two main groups of stem cells, embryonic stem cells and adult stem cells, have been expanded to include perinatal stem cells. Mesenchymal stem cells from perinatal tissue may be particularly useful in the clinic for autologous transplantation for fetuses and newborns, and after banking in later stages of life, as well as for in utero transplantation in case of genetic disorders.This review highlights the characteristics and therapeutic potential of three human mesenchymal stem cell types obtained from perinatal sources: Wharton’s jelly, the amnion, and the chorion.


Placenta ◽  
2011 ◽  
Vol 32 ◽  
pp. S339 ◽  
Author(s):  
R.R. Taghizadeh ◽  
K.E. Pollok ◽  
M. Betancur ◽  
L. Boissel ◽  
K.J. Cetrulo ◽  
...  

2013 ◽  
Vol 8 (1) ◽  
pp. 39-45 ◽  
Author(s):  
Simona Corrao ◽  
Giampiero La Rocca ◽  
Melania Lo Iacono ◽  
Giovanni Zummo ◽  
Aldo Gerbino ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document