scholarly journals Cloud Particles Evolution Algorithm

2015 ◽  
Vol 2015 ◽  
pp. 1-21 ◽  
Author(s):  
Wei Li ◽  
Lei Wang ◽  
Qiaoyong Jiang ◽  
Xinhong Hei ◽  
Bin Wang

Many evolutionary algorithms have been paid attention to by the researchers and have been applied to solve optimization problems. This paper presents a new optimization method called cloud particles evolution algorithm (CPEA) to solve optimization problems based on cloud formation process and phase transformation of natural substance. The cloud is assumed to have three states in the proposed algorithm. Gaseous state represents the global exploration. Liquid state represents the intermediate process from the global exploration to the local exploitation. Solid state represents the local exploitation. The cloud is composed of descript and independent particles in this algorithm. The cloud particles use phase transformation of three states to realize the global exploration and the local exploitation in the optimization process. Moreover, the cloud particles not only realize the survival of the fittest through competition mechanism but also ensure the diversity of the cloud particles by reciprocity mechanism. The effectiveness of the algorithm is validated upon different benchmark problems. The proposed algorithm is compared with a number of other well-known optimization algorithms, and the experimental results show that cloud particles evolution algorithm has a higher efficiency than some other algorithms.

2015 ◽  
Vol 2015 ◽  
pp. 1-36 ◽  
Author(s):  
Wei Li ◽  
Lei Wang ◽  
Quanzhu Yao ◽  
Qiaoyong Jiang ◽  
Lei Yu ◽  
...  

We propose a new optimization algorithm inspired by the formation and change of the cloud in nature, referred to as Cloud Particles Differential Evolution (CPDE) algorithm. The cloud is assumed to have three states in the proposed algorithm. Gaseous state represents the global exploration. Liquid state represents the intermediate process from the global exploration to the local exploitation. Solid state represents the local exploitation. The best solution found so far acts as a nucleus. In gaseous state, the nucleus leads the population to explore by condensation operation. In liquid state, cloud particles carry out macrolocal exploitation by liquefaction operation. A new mutation strategy called cloud differential mutation is introduced in order to solve a problem that the misleading effect of a nucleus may cause the premature convergence. In solid state, cloud particles carry out microlocal exploitation by solidification operation. The effectiveness of the algorithm is validated upon different benchmark problems. The results have been compared with eight well-known optimization algorithms. The statistical analysis on performance evaluation of the different algorithms on 10 benchmark functions and CEC2013 problems indicates that CPDE attains good performance.


2017 ◽  
Vol 2017 ◽  
pp. 1-23
Author(s):  
Wei Li

Computational scientists have designed many useful algorithms by exploring a biological process or imitating natural evolution. These algorithms can be used to solve engineering optimization problems. Inspired by the change of matter state, we proposed a novel optimization algorithm called differential cloud particles evolution algorithm based on data-driven mechanism (CPDD). In the proposed algorithm, the optimization process is divided into two stages, namely, fluid stage and solid stage. The algorithm carries out the strategy of integrating global exploration with local exploitation in fluid stage. Furthermore, local exploitation is carried out mainly in solid stage. The quality of the solution and the efficiency of the search are influenced greatly by the control parameters. Therefore, the data-driven mechanism is designed for obtaining better control parameters to ensure good performance on numerical benchmark problems. In order to verify the effectiveness of CPDD, numerical experiments are carried out on all the CEC2014 contest benchmark functions. Finally, two application problems of artificial neural network are examined. The experimental results show that CPDD is competitive with respect to other eight state-of-the-art intelligent optimization algorithms.


2020 ◽  
Vol 45 (2) ◽  
pp. 97-124
Author(s):  
Pikul Puphasuk ◽  
Jeerayut Wetweerapong

AbstractDesigning an efficient optimization method which also has a simple structure is generally required by users for its applications to a wide range of practical problems. In this research, an enhanced differential evolution algorithm with adaptation of switching crossover strategy (DEASC) is proposed as a general-purpose population-based optimization method for continuous optimization problems. DEASC extends the solving ability of a basic differential evolution algorithm (DE) whose performance significantly depends on user selection of the control parameters: scaling factor, crossover rate and population size. Like the original DE, the proposed method is aimed at e ciency, simplicity and robustness. The appropriate population size is selected to work in accordance with good choices of the scaling factors. Then, the switching crossover strategy of using low or high crossover rates are incorporated and adapted to suit the problem being solved. In this manner, the adaptation strategy is just a convenient add-on mechanism. To verify the performance of DEASC, it is tested on several benchmark problems of various types and di culties, and compared with some well-known methods in the literature. It is also applied to solve some practical systems of nonlinear equations. Despite its much simpler algorithmic structure, the experimental results show that DEASC greatly enhances the basic DE. It is able to solve all the test problems with fast convergence speed and overall outperforms the compared methods which have more complicated structures. In addition, DEASC also shows promising results on high dimensional test functions.


2014 ◽  
Vol 2014 ◽  
pp. 1-11 ◽  
Author(s):  
Hai Shen ◽  
Yunlong Zhu ◽  
Xiaodan Liang

Bioinspired optimization algorithms have been widely used to solve various scientific and engineering problems. Inspired by biological lifecycle, this paper presents a novel optimization algorithm called lifecycle-based swarm optimization (LSO). Biological lifecycle includes four stages: birth, growth, reproduction, and death. With this process, even though individual organism died, the species will not perish. Furthermore, species will have stronger ability of adaptation to the environment and achieve perfect evolution. LSO simulates Biological lifecycle process through six optimization operators: chemotactic, assimilation, transposition, crossover, selection, and mutation. In addition, the spatial distribution of initialization population meets clumped distribution. Experiments were conducted on unconstrained benchmark optimization problems and mechanical design optimization problems. Unconstrained benchmark problems include both unimodal and multimodal cases the demonstration of the optimal performance and stability, and the mechanical design problem was tested for algorithm practicability. The results demonstrate remarkable performance of the LSO algorithm on all chosen benchmark functions when compared to several successful optimization techniques.


Author(s):  
Piergiorgio Alotto ◽  
Leandro dos Santos Coelho ◽  
Viviana C. Mariani ◽  
Camila da C. Oliveira

Purpose – The purpose of this paper is to show with the help widely used analytical and application-oriented benchmark problems that a novel and relatively uncommon optimization method, lambda optimization, can be successfully applied to the solution of optimization problems in electromagnetics. Furthermore an improvement to the method is proposed and its effectiveness is validated. Design/methodology/approach – An adaptive probability factor is used within the framework of lambda optimization. Findings – It is shown that in the framework of lambda optimization (LO) the use of an adaptive probability factor can provide high-quality solutions with small standard deviation on the selected benchmark problem. Research limitations/implications – Although the chosen benchmarks are considered to be representative of typical electromagnetic problems, different test cases may give less satisfactory results. Practical implications – The proposed approach appears to be an efficient general purpose stochastic optimizer for electromagnetic design problems. Originality/value – This paper introduces and validates the use of adaptive probability factor in order to improve the balance between the explorative and exploitative characteristics of the LO algorithm.


Author(s):  
X. Z. GAO ◽  
X. WANG ◽  
S. J. OVASKA ◽  
K. ZENGER

The differential evolution (DE) and harmony search (HS) are two well-known nature-inspired computing techniques. Both of them can be applied to effectively cope with nonlinear optimization problems. In this paper, we propose and study a new DE method, DE–HS, by utilizing the fresh individual generation mechanism of the HS. The HS-based approach can enhance the local search capability of the original DE. Optimization of some unconstrained and constrained benchmark problems and a real-world wind generator demonstrate that our DE–HS has an improved convergence property.


2014 ◽  
Vol 989-994 ◽  
pp. 2528-2531
Author(s):  
Hong Gang Xia ◽  
Qing Zhou Wang

Harmony search algorithm is a new meta-heuristic optimization method imitating the music improvisation process where musicians improvise their instruments’ pitches searching for a perfect state of harmony. To enable the harmony search algorithm to transcend its limited capability of local optimum, a modified harmony search algorithm is proposed in this paper. In the modified harmony search algorithm, the mutation operation of differential evolution algorithm is introduced into MHS algorithm, which improves its convergence. Several standard benchmark optimization functions are to be test and compare the performance of the MHS. The results revealed the superiority of the proposed method to the HS and recently developed variants.


2016 ◽  
Vol 25 (02) ◽  
pp. 1550030 ◽  
Author(s):  
Gai-Ge Wang ◽  
Amir H. Gandomi ◽  
Amir H. Alavi ◽  
Suash Deb

A multi-stage krill herd (MSKH) algorithm is presented to fully exploit the global and local search abilities of the standard krill herd (KH) optimization method. The proposed method involves exploration and exploitation stages. The exploration stage uses the basic KH algorithm to select a good candidate solution set. This phase is followed by fine-tuning a good candidate solution in the exploitation stage with a focused local mutation and crossover (LMC) operator in order to enhance the reliability of the method for solving global numerical optimization problems. Moreover, the elitism scheme is introduced into the MSKH method to guarantee the best solution. The performance of MSKH is verified using twenty-five standard and rotated and shifted benchmark problems. The results show the superiority of the proposed algorithm to the standard KH and other well-known optimization methods.


2018 ◽  
Vol 35 (1) ◽  
pp. 71-90 ◽  
Author(s):  
Xiwen Cai ◽  
Haobo Qiu ◽  
Liang Gao ◽  
Xiaoke Li ◽  
Xinyu Shao

Purpose This paper aims to propose hybrid global optimization based on multiple metamodels for improving the efficiency of global optimization. Design/methodology/approach The method has fully utilized the information provided by different metamodels in the optimization process. It not only imparts the expected improvement criterion of kriging into other metamodels but also intelligently selects appropriate metamodeling techniques to guide the search direction, thus making the search process very efficient. Besides, the corresponding local search strategies are also put forward to further improve the optimizing efficiency. Findings To validate the method, it is tested by several numerical benchmark problems and applied in two engineering design optimization problems. Moreover, an overall comparison between the proposed method and several other typical global optimization methods has been made. Results show that the global optimization efficiency of the proposed method is higher than that of the other methods for most situations. Originality/value The proposed method sufficiently utilizes multiple metamodels in the optimizing process. Thus, good optimizing results are obtained, showing great applicability in engineering design optimization problems which involve costly simulations.


Author(s):  
Nizar Hadi Abbas

In this paper, design of proportional- derivative (PD) controller, pseudo-derivative-feedback (PDF) controller and PDF with feedforward (PDFF) controller for magnetic suspending system have been presented. Tuning of the above controllers is achieved based on Bat algorithm (BA). BA is a recent bio-inspired optimization method for solving global optimization problems, which mimic the behavior of micro-bats. The weak point of the standard BA is the exploration ability due to directional echolocation and the difficulty in escaping from local optimum. The new improved BA enhances the convergence rate while obtaining optimal solution by introducing three adaptations namely modified frequency factor, adding inertia weight and modified local search. The feasibility of the proposed algorithm is examined by applied to several benchmark problems that are adopted from literature. The results of IBA are compared with the results collected from standard BA and the well-known particle swarm optimization (PSO) algorithm. The simulation results show that the IBA has a higher accuracy and searching speed than the approaches considered. Finally, the tuning of the three controlling schemes using the proposed algorithm, standard BA and PSO algorithms reveals that IBA has a higher performance compared with the other optimization algorithms


Sign in / Sign up

Export Citation Format

Share Document