scholarly journals Decentralized Identification and Control in Real-Time of a Robot Manipulator via Recurrent Wavelet First-Order Neural Network

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Luis A. Vázquez ◽  
Francisco Jurado ◽  
Alma Y. Alanís

A decentralized recurrent wavelet first-order neural network (RWFONN) structure is presented. The use of a wavelet Morlet activation function allows proposing a neural structure in continuous time of a single layer and a single neuron in order to identify online in a series-parallel configuration, using the filtered error (FE) training algorithm, the dynamics behavior of each joint for a two-degree-of-freedom (DOF) vertical robot manipulator, whose parameters such as friction and inertia are unknown. Based on the RWFONN subsystem, a decentralized neural controller is designed via backstepping approach. The performance of the decentralized wavelet neural controller is validated via real-time results.

2021 ◽  
Vol 2 (2) ◽  
Author(s):  
Kate Highnam ◽  
Domenic Puzio ◽  
Song Luo ◽  
Nicholas R. Jennings

AbstractBotnets and malware continue to avoid detection by static rule engines when using domain generation algorithms (DGAs) for callouts to unique, dynamically generated web addresses. Common DGA detection techniques fail to reliably detect DGA variants that combine random dictionary words to create domain names that closely mirror legitimate domains. To combat this, we created a novel hybrid neural network, Bilbo the “bagging” model, that analyses domains and scores the likelihood they are generated by such algorithms and therefore are potentially malicious. Bilbo is the first parallel usage of a convolutional neural network (CNN) and a long short-term memory (LSTM) network for DGA detection. Our unique architecture is found to be the most consistent in performance in terms of AUC, $$F_1$$ F 1 score, and accuracy when generalising across different dictionary DGA classification tasks compared to current state-of-the-art deep learning architectures. We validate using reverse-engineered dictionary DGA domains and detail our real-time implementation strategy for scoring real-world network logs within a large enterprise. In 4 h of actual network traffic, the model discovered at least five potential command-and-control networks that commercial vendor tools did not flag.


Author(s):  
O. C. Akgun ◽  
J. Mei

This paper presents the design of an ultra-low energy neural network that uses time-mode signal processing). Handwritten digit classification using a single-layer artificial neural network (ANN) with a Softmin-based activation function is described as an implementation example. To realize time-mode operation, the presented design makes use of monostable multivibrator-based multiplying analogue-to-time converters, fixed-width pulse generators and basic digital gates. The time-mode digit classification ANN was designed in a standard CMOS 0.18 μm IC process and operates from a supply voltage of 0.6 V. The system operates on the MNIST database of handwritten digits with quantized neuron weights and has a classification accuracy of 88%, which is typical for single-layer ANNs, while dissipating 65.74 pJ per classification with a speed of 2.37 k classifications per second. This article is part of the theme issue ‘Harmonizing energy-autonomous computing and intelligence’.


Algorithms ◽  
2019 ◽  
Vol 12 (5) ◽  
pp. 97
Author(s):  
Song Zheng ◽  
Chao Bi ◽  
Yilin Song

This paper presents a novel diagonal recurrent neural network hybrid controller based on the shared memory of real-time database structure. The controller uses Data Engine (DE) technology, through the establishment of a unified and standardized software architecture and real-time database in different control stations, effectively solves many problems caused by technical standard, communication protocol, and programming language in actual industrial application: the advanced control algorithm and control system co-debugging difficulties, algorithm implementation and update inefficiency, and high development and operation and maintenance costs effectively fill the current technical gap. More importantly, the control algorithm development uses a unified visual graphics configuration programming environment, effectively solving the problem of integrated control of heterogeneous devices; and has the advantages of intuitive configuration and transparent data processing process, reducing the difficulty of the advanced control algorithms debugging in engineering applications. In this paper, the application of a neural network hybrid controller based on DE in motor speed measurement and control system shows that the system has excellent control characteristics and anti-disturbance ability, and provides an integrated method for neural network control algorithm in a practical industrial control system, which is the major contribution of this article.


1999 ◽  
Vol 32 (2) ◽  
pp. 1433-1438
Author(s):  
Di Xiao ◽  
Bijoy K. Ghosh ◽  
Ning Xi ◽  
Tzyh Jong Tarn ◽  
Zhenyu Yu

2021 ◽  
Vol 3 (1) ◽  
pp. 80-88
Author(s):  
D Kushnir ◽  

As a result of the analytical review, it was established that the family of Yolo models is a promising area of search and recognition of objects. However, existing implementations do not support the ability to run the model on the iOS platform. To achieve these goals, a comprehensive scalable conversion system has been developed to improve the recognition accuracy of arbitrary models based on the Docker system. The method of improvement is to add a layer with the Mish activation function to the original model. The method of conversion is to quickly convert any Yolo model to CoreML format. As part of the study of these techniques, a model of the neural network Yolov4_TCAR was created. Additionally, a method of accelerating the load on the CPU using an additional layer of neural network with the function of activating Mish in Swift for the iOS mobile platform was added. As a result, the effectiveness of the Mish activation function, the CPU load of the mobile device, the amount of RAM used, and the frame rate when using the improved original Yolov4-TCAR model were studied. The results of the research confirmed the functioning of the algorithm for conversion and accuracy increase of the neural network model in real-time.


Author(s):  
D R Parhi ◽  
M K Singh

This article deals with the reactive control of an autonomous robot, which moves safely in a crowded real-world unknown environment and reaches a specified target by avoiding static as well as dynamic obstacles. The inputs to the proposed neural controller consist of left, right, and front obstacle distance to its locations and the target angle between a robot and a specified target acquired by an array of sensors. A four-layer neural network has been used to design and develop the neural controller to solve the path and time optimization problem of mobile robots, which deals with cognitive tasks such as learning, adaptation, generalization, and optimization. The back-propagation method is used to train the network. This article analyses the kinematical modelling of mobile robots as well as the design of control systems for the autonomous motion of the robot. Training of the neural net and control performances analysis were carried out in a real experimental set-up. The simulation results are compared with the experimental results and they show very good agreement.


2018 ◽  
Vol 49 (3) ◽  
pp. 1629-1648 ◽  
Author(s):  
Luis A. Vázquez ◽  
Francisco Jurado ◽  
Carlos E. Castañeda ◽  
Alma Y. Alanis

Sign in / Sign up

Export Citation Format

Share Document