scholarly journals Flocking Control of Multiple Mobile Agents with the Rules of Avoiding Collision

2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Hongtao Zhou ◽  
Wenfeng Zhou ◽  
Wei Zeng

This paper investigates the flocking and the coordinative control problems of multiple mobile agents with the rules of avoiding collision. We propose a set of control laws using hysteresis in adding new links and applying new potential function to guarantee that the fragmentation of the network can be avoided, under which all agents approach a common velocity vector, and asymptotically converge to a fixed value of interagent distances and collisions between agents can be avoided throughout the motion. Furthermore, we extend the flocking algorithm to solve the flocking situation of the group with a virtual leader agent. The laws can make all agents asymptotically approach the virtual leader and collisions can be avoided between agents in the motion evolution. Finally, some numerical simulations are showed to illustrate the theoretical results.

Author(s):  
Manish Kumar ◽  
Devendra P. Garg ◽  
Randy Zachery

This paper investigates the effectiveness of designed random behavior in cooperative formation control of multiple mobile agents. A method based on artificial potential functions provides a framework for decentralized control of their formation. However, it implies heavy communication costs. The communication requirement can be replaced by onboard sensors. The onboard sensors have limited range and provide only local information, and may result in the formation of isolated clusters. This paper proposes to introduce a component representing random motion in the artificial potential function formulation of the formation control problem. The introduction of the random behavior component results in a better chance of global cluster formation. The paper uses an agent model that includes both position and orientation, and formulates the dynamic equations to incorporate that model in artificial potential function approach. The effectiveness of the proposed method is verified via extensive simulations performed on a group of mobile agents and leaders.


2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Runsha Dong

This paper concerns the problem of consensus tracking for multiagent systems with a dynamical leader. In particular, it proposes the corresponding explicit control laws for multiple first-order nonlinear systems, second-order nonlinear systems, and quite general nonlinear systems based on the leader-follower and the tree shaped network topologies. Several numerical simulations are given to verify the theoretical results.


2020 ◽  
Vol 23 (2) ◽  
pp. 553-570 ◽  
Author(s):  
Li Ma

AbstractThis paper is devoted to the investigation of the kinetics of Hadamard-type fractional differential systems (HTFDSs) in two aspects. On one hand, the nonexistence of non-trivial periodic solutions for general HTFDSs, which are considered in some functional spaces, is proved and the corresponding eigenfunction of Hadamard-type fractional differential operator is also discussed. On the other hand, by the generalized Gronwall-type inequality, we estimate the bound of the Lyapunov exponents for HTFDSs. In addition, numerical simulations are addressed to verify the obtained theoretical results.


2004 ◽  
Vol 126 (4) ◽  
pp. 873-879 ◽  
Author(s):  
P. Seiler ◽  
A. Pant ◽  
J. K. Hedrick

Flying in formation improves aerodynamic efficiency and, consequently, leads to an energy savings. One strategy for formation control is to follow the preceding vehicle. Many researchers have shown through simulation results and analysis of specific control laws that this strategy leads to amplification of disturbances as they propagate through the formation. This effect is known as string instability. In this paper, we show that string instability is due to a fundamental constraint on coupled feedback loops. The tradeoffs imposed by this constraint imply that predecessor following is an inherently poor strategy for formation flight control. Finally, we present two examples that demonstrate the theoretical results.


2014 ◽  
Vol 02 (03) ◽  
pp. 243-248 ◽  
Author(s):  
Cheng Song ◽  
Gang Feng

This paper investigates the coverage problem for mobile sensor networks on a circle. The goal is to minimize the largest distance from any point on the circle to its nearest sensor while preserving the mobile sensors' order. The coverage problem is translated into a multi-agent consensus problem by showing that the largest distance from any point to its nearest sensor is minimized if the counterclockwise distance between each sensor and its right neighbor reaches a consensus. Distributed control laws are also developed to drive the mobile agents to the optimal configuration with order preservation. Simulation results illustrate the effectiveness of the proposed control laws.


2018 ◽  
Vol 2018 ◽  
pp. 1-10 ◽  
Author(s):  
Ali El Myr ◽  
Abdelaziz Assadouq ◽  
Lahcen Omari ◽  
Adel Settati ◽  
Aadil Lahrouz

We investigate the conditions that control the extinction and the existence of a unique stationary distribution of a nonlinear mathematical spread model with stochastic perturbations in a population of varying size with relapse. Numerical simulations are carried out to illustrate the theoretical results.


Sign in / Sign up

Export Citation Format

Share Document