scholarly journals First Principles Study of Electronic and Magnetic Properties of Co-Doped Armchair Graphene Nanoribbons

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Biao Li ◽  
Dahai Xu ◽  
Jun Zhao ◽  
Hui Zeng

Using the first principles calculations, we have studied the atomic and electronic structures of single Co atom incorporated with divacancy in armchair graphene nanoribbon (AGNR). Our calculated results show that the Co atom embedded in AGNR gives rise to significant impacts on the band structures and the FM spin configuration is the ground state. The presence of the Co doping could introduce magnetic properties. The calculated results revealed the arising of spin gapless semiconductor characteristics with doping near the edge in both ferromagnetic (FM) and antiferromagnetic (AFM) magnetic configurations, suggesting the robustness for potential application of spintronics. Moreover, the electronic structures of the Co-doped AGNRs are strongly dependent on the doping sites and the edge configurations.

RSC Advances ◽  
2018 ◽  
Vol 8 (40) ◽  
pp. 22625-22634 ◽  
Author(s):  
Han Hu ◽  
Siow Mean Loh ◽  
Tsan-Chuen Leung ◽  
Ming-Chieh Lin

The field screening effect on the field-emission properties of armchair graphene nanoribbons (AGNRs) under strain has been studied using first-principles calculations with local density approximation (LDA).


2014 ◽  
Vol 28 (29) ◽  
pp. 1450229 ◽  
Author(s):  
Cai-ping Cheng ◽  
Hui-fang Hu ◽  
Zhao-jin Zhang ◽  
Quanhui Liu ◽  
Ying Chen ◽  
...  

By adopting density functional theory in combination with nonequilibrium Green's functions, we investigated the electronic structure and transport properties of silicon/nitrogen ( Si / N ) co-doping armchair graphene nanoribbons (AGNRs) with SiN x co-dopant incorporated in neighboring carbon atoms. The results demonstrate that the electronic structure can be modulated by introducing SiN x co-dopants in AGNRs. The striking negative differential resistance behaviors in the range of low bias can be observed in Si / N co-doped AGNR devices. These remarkable properties suggest the potential application of Si / N co-doping AGNRs in molectronics.


Vacuum ◽  
2020 ◽  
Vol 172 ◽  
pp. 109091
Author(s):  
Long Lin ◽  
Jingtao Huang ◽  
Weiyang Yu ◽  
Hualong Tao ◽  
Linghao Zhu ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document