scholarly journals Production and Metabolism of Indole Acetic Acid in Root Nodules and Symbiont (Rhizobium undicola) Isolated from Root Nodule of Aquatic Medicinal Legume Neptunia oleracea Lour.

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Pallab Kumar Ghosh ◽  
Tarun Kumar De ◽  
Tushar Kanti Maiti

Indole acetic acid is a phytohormone which plays a vital role in plant growth and development. The purpose of this study was to shed some light on the production of IAA in roots, nodules, and symbionts of an aquatic legume Neptunia oleracea and its possible role in nodular symbiosis. The symbiont (N37) was isolated from nodules of this plant and identified as Rhizobium undicola based on biochemical characteristics, 16S rDNA sequence homology, and DNA-DNA hybridization results. The root nodules were found to contain more IAA and tryptophan than root; however, no detectable amount of IAA was found in root. The IAA metabolizing enzymes IAA oxidase, IAA peroxidase (E.C.1.11.1.7), and polyphenol oxidase (E.C.1.14.18.1) were higher in root than nodule but total phenol and IAA content were reversed. The strain N37 was found to produce copious amount of IAA in YEM broth medium with tryptophan and reached its stationary phase at 20 h. An enrichment of the medium with mannitol, ammonium sulphate, B12, and 4-hydroxybenzaldehyde was found to promote the IAA production. The presence of IAA metabolizing enzymes and IAA production with PGPR traits including ACC deaminase activity of the symbionts was essential for plant microbe interaction and nodule function.

2016 ◽  
Vol 77 (1) ◽  
Author(s):  
. SUHARYANTO ◽  
. TRI-PANJI ◽  
. GUSNANIAR

AbstractThe utilization of latex effluent to producebioproduct like indole acetic acid (IAA) willreduce amount of effluent, as well as effluentprocessing cost and produce an economicallyprofitable product. IAA could be produced bysome rhizosphere microbes that could grow onlatex effluent using L-tryptophan (Trp) as itsprecursor. The aim of this research is todetermine potential growth and capability of IAAproduction by Rhizobium spp. R6 and KT onsynthetic and latex serum media supplementedwith pure Trp and with litter poultry manure as acheap source of Trp. The research coveredexamination of IAA producing Rhizobia usingliquid synthetic media supplemented with 0.07g/L and 0.14 g/L Trp. The potential Rhizobiumsp. in producing IAA was then inoculated intolatex serum media supplemented with pure Trpand Trp from litter poultry manure. Result of theresearch showed that the highest IAA productionwas reached as much as 51.08 µg/mL in syntheticmedia supplemented with 0.14 g/L Trp inoculatedwith Rhizobium sp. R6. IAA could be producedas much as 6.63 µg/mL in pasteurizedundiluted latex serum media supplemented with0.14 g/L Trp. Using latex serum mediasupplemented with Trp from litter poultry manureshowed that Rhizobium sp. R6 could produce11.91 µg/mL. Supplementation of pure syntheticTrp in IAA production could be replaced withlitter poultry manure as a cheap source of Trp.AbstrakPemanfaatan limbah lateks menjadi produkbio seperti asam indol asetat (IAA), dapatmengurangi volume limbah, menekan biayapengolahan limbah, serta menghasilkan produkyang bernilai ekonomis. IAA dapat dihasilkanoleh beberapa mikroba rhizosfer yang mamputumbuh dalam limbah lateks dengan L-triptofan(Trp) sebagai prekursor-nya. Penelitian bertujuanmenetapkan potensi pertumbuhan dan produksiIAA oleh Rhizobium spp. R6 dan KT dalammedium sintetik dan serum lateks yangdisuplementasi Trp sintetik dan kotoran ayamsebagai sumber Trp murah. Isolat potensial dalamproduksi IAA kemudian ditumbuhkan dalammedium serum lateks pekat yang disuplementasiTrp murni dan Trp dari kotoran ayam. Hasilpenelitian menunjukkan bahwa produksi IAAtertinggi diperoleh dalam medium sintetik olehRhizobium sp. R6, sebesar 51,08 µg/mL. IAAdapat diproduksi sebesar 6,63 µg/mL dalammedium serum lateks 100% + Trp 0,14 g/L yangdipasteurisasi. Dalam medium serum lateks yangdisuplementasi Trp dari kotoran ayam, produksiIAA Rhizobium sp. R6 dapat mencapai 11,91µg/mL. Suplementasi Trp murni dalam produksiIAA dapat digantikan dengan kotoran ayamsebagai sumber Trp yang mura


2012 ◽  
Vol 2012 ◽  
pp. 1-4 ◽  
Author(s):  
Ruben Puga-Freitas ◽  
Samir Abbad ◽  
Agnès Gigon ◽  
Evelyne Garnier-Zarli ◽  
Manuel Blouin

Some soil microorganisms are involved in the complex interactions with plants and earthworms, through the production of indole acetic acid (IAA) which modifies plant growth and development. In a factorial experiment testing the impact of the presence/absence of plants and earthworms on IAA production by cultivable bacteria, we observed that plants were decreasing IAA production of 43%, whereas earthworms were increasing it of 46%. In the presence of both plant and earthworms, IAA production was as low as in the presence of plant control, showing that plants influence on IAA production by microorganisms prevails on earthworm influence. We discuss functional reasons which could explain this result.


2011 ◽  
Vol 48 (2) ◽  
pp. 173-182 ◽  
Author(s):  
Rumpa Biswas Bhattacharjee ◽  
Philippe Jourand ◽  
Clémence Chaintreuil ◽  
Bernard Dreyfus ◽  
Aqbal Singh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document