scholarly journals Distributed Measurement of Temperature for PCC Energy Pile Using BOFDA

2015 ◽  
Vol 2015 ◽  
pp. 1-6 ◽  
Author(s):  
Lei Gao ◽  
Baoquan Ji ◽  
Gangqiang Kong ◽  
Xu Huang ◽  
Mingkun Li ◽  
...  

PCC energy pile is a new technology for sustainable development of urban areas. Learning and understanding the temperature variation of PCC energy pile are very important to its development and application. In this study, the Brillouin optical frequency domain analysis (BOFDA) technology is firstly used to measure the temperature variation of PCC energy pile from a model test. The aim is to provide an optical fiber sensing method for monitoring the temperature distribution of PCC energy pile. When the temperatures of circulating water are 70°C, 60°C, 50°C, and 40°C, the result shows that the temperatures of PCC energy pile under different conditions are measured well by the optical fiber sensor. It will help to master the temperature distribution and thermomechanical characteristic of PCC energy pile. It can also provide the important scientific and theoretical basis for the design and application of PCC energy pile.

1997 ◽  
Vol 503 ◽  
Author(s):  
F. Ansari ◽  
Z. Chen ◽  
Q. Li

ABSTRACTStructurally integrated optical fiber sensors form the basis for smart structure technology. Over the past decade a variety of sensor configurations have been developed for measurement of strains and deformations in structures. Strains and deformations alter the refractive index and the geometry of the optical fiber material. These changes perturb the intensity, phase, and polarization of the light-wave propagating along the probing fiber. The optical perturbations are detected for the determination of strain. The research presented here describes the development of a new optical fiber sensor system for measurement of structural strains based on white light interferometry. An optical switch provides for multiplexing of strain signals from various locations in the structure. Redundant Bragg grating type fiber optic sensors as well as strain gauges were employed for comparison and verification of strain signals as measured by the new system. The system provides capability for distributed sensing of strains in large structures.


2015 ◽  
Vol 23 (9) ◽  
pp. 11073 ◽  
Author(s):  
Luca Palmieri ◽  
Davide Sarchi ◽  
Andrea Galtarossa

2010 ◽  
Vol 75 (6) ◽  
pp. 411-420
Author(s):  
Nobuhiro Fujiki ◽  
Shinnosuke Irisawa ◽  
Kazuhiro Sakamaki ◽  
Katsumi Nemoto

2020 ◽  
Vol 2020 ◽  
pp. 1-5
Author(s):  
Liwen Sheng ◽  
Ligong Li ◽  
Leijun Hu ◽  
Ming Yuan ◽  
Jinpeng Lang ◽  
...  

A unique multiparameter sensor for distributed measurement of temperature and strain based on spontaneous Brillouin scattering in polyimide-coated optical fiber is proposed, which is an excellent candidate for the cross-sensitivity problem in conventional Brillouin sensing network. In the experimental section, the discrimination of strain and temperature is successfully demonstrated by analysing the unequal sensing coefficients of the Brillouin frequency shifts generated by different acoustic modes. The Brillouin frequency shifts of the main two peaks are successfully measured to discriminate the strain and temperature with an accuracy 19.68 με and 1.02°C in 2.5 km sensing range. The proposed distributed Brillouin optical fiber sensor allows simultaneous measurement of temperature and strain, thus opening a door for practical application such as oil explorations.


2021 ◽  
Vol 11 (1) ◽  
pp. 31-44
Author(s):  
Wenchao Li ◽  
Yonggui Yuan ◽  
Jun Yang ◽  
Libo Yuan

AbstractOptical fiber sensor networks (OFSNs) provide powerful tools for large-scale buildings or long-distance sensing, and they can realize distributed or quasi-distributed measurement of temperature, strain, and other physical quantities. This article provides some optical fiber sensor network technologies based on the white light interference technology. We discuss the key issues in the fiber white light interference network, including the topology structure of white light interferometric fiber sensor network, the node connection components, and evaluation of the maximum number of sensors in the network. A final comment about further development prospects of fiber sensor network is presented.


2018 ◽  
Vol 56 (1) ◽  
pp. 94-99
Author(s):  
N. Sogabe ◽  
S. Nakaue ◽  
K. Chikiri ◽  
M. Hayakawa

2019 ◽  
Vol 5 (0) ◽  
pp. 19-00095-19-00095
Author(s):  
Shogo FUJIMOTO ◽  
Suguru UEMURA ◽  
Nobuyuki IMANISHI ◽  
Shuichiro HIRAI

2021 ◽  
Vol 11 (1) ◽  
pp. 359
Author(s):  
Sung Tae Kim ◽  
Hyejin Yoon ◽  
Young-Hwan Park ◽  
Seung-Seop Jin ◽  
Soobong Shin ◽  
...  

This paper presents a multi-functional strand capable of introducing prestressing force in prestressed concrete (PSC) girders and sensing their static and dynamic behavior as well. This innovative strand is developed by replacing the core steel wire of the strand used in PSC structures with a carbon fiber-reinforced polymer (CFRP) wire with a built-in optical Fiber Bragg Grating (FBG) sensor. A full-scale girder specimen was fabricated by applying this multi-function strand to check the possibility of tracking the change of prestressing force at each construction stage. Moreover, dynamic data could be secured during dynamic loading tests without installing accelerometers and made it possible to obtain the natural frequencies of the structure. The results verified the capability to effectively manage the prestressing force in the PSC bridge structure by applying the PC strand with a built-in optical sensor known for its outstanding practicability and durability.


Sign in / Sign up

Export Citation Format

Share Document