scholarly journals A Well-Balanced and Fully Coupled Noncapacity Model for Dam-Break Flooding

2015 ◽  
Vol 2015 ◽  
pp. 1-13 ◽  
Author(s):  
Zhiyuan Yue ◽  
Huaihan Liu ◽  
Youwei Li ◽  
Peng Hu ◽  
Yanyan Zhang

The last two decades have seen great progress in mathematical modeling of fluvial processes and flooding in terms of either approximation of the physical processes or dealing with the numerical difficulties. Yet attention to simultaneously taking advancements of both aspects is rarely paid. Here a well-balanced and fully coupled noncapacity model is presented of dam-break flooding over erodible beds. The governing equations are based on the complete mass and momentum conservation laws, implying fully coupled interactions between the dam-break flow and sediment transport. A well-balanced Godunov-type finite volume method is used to solve the governing equations, facilitating satisfactory representation of the complex flow phenomena. The well-balanced property is attained by using the divergence form of matrix related to the static force for the bottom slope source term. Existing classical tests, including idealized dam-break flooding over irregular topography and experimental dam-break flooding with/without sediment transport, are numerically simulated, showing a satisfactory quantitative performance of this model.

2015 ◽  
Vol 72 (7) ◽  
pp. 1155-1167 ◽  
Author(s):  
Alireza Hosseinzadeh-Tabrizi ◽  
Mahnaz Ghaeini-Hessaroeyeh

A two-dimensional numerical model predicting flow over a mobile bed has been developed. Governing equations consist of the shallow water equations and the Exner equation. The finite volume method on an unstructured triangular grid was deployed to discretize the governing equations. The local Riemann problem is solved by the Harten, Lax and van Leer–contact (HLLC) method in the interface of the cells and the equations are solved using a fully coupled method. Then the flux modelling has been deployed by the total variation diminishing (TVD) version of the weighted average flux (WAF) scheme. The model was verified by comparison of the results and available experimental data for dam-break flow, in a laboratory test, via a channel with sudden enlargement and erodible bed conditions. Comparison of these two sets of results shows that increasing the accuracy of flux modelling caused the model results to have a reasonable agreement with the experimental data.


2019 ◽  
Vol 21 (5) ◽  
pp. 834-850 ◽  
Author(s):  
Mina Barzgaran ◽  
Hossein Mahdizadeh ◽  
Soroosh Sharifi

Abstract This paper presents an efficient second-order finite volume method for the simulation of bedload sediment transport which is capable of modeling wet/dry fronts. The governing equations comprise the shallow water equations (SWEs) for the hydrodynamic phase and the Exner equation for the estimation of bedload sediment transport. These sets of equations are then solved using a weakly coupled scheme based on an augmented Riemann solver (WCAR). In this approach, first, the morphodynamic equation is solved, and then, updated bedload changes with the same Riemann structures are used as a source term within the SWEs. The Smart formula is utilized to estimate the bedload sediment discharge within the Exner equation. The proposed numerical model is first used to model a parabolic sediment layer. Then, a bedload hump propagation with an initial subcritical condition is considered. Next, the simulation of dam-break flow over a mobile bed is investigated. Finally, the dam failure due to over-topping is studied and the computed results are compared with available experimental data. Numerical results indicate that the introduced weakly coupled method, developed based upon the augmented Riemann solver, can be effectively used for modeling all investigated flow regimes, including dry-state interfaces.


2011 ◽  
Vol 130-134 ◽  
pp. 3620-3623
Author(s):  
Ming Qin Liu ◽  
Y.L. Liu

This paper was concerned with a vertical two-dimensional (2D) flow model with free surface. The water governing equations were discretized with finite difference method. The function of volume method was employed to track the moving free surface. The model was used to predict the characteristics of dam-break flow in a 2D vertical plane. The surface profile and time averaged velocity were calculated, which shows the proposed model can be capable of capturing sharp water and gas interface configuration as time elapses.


2012 ◽  
Vol 2012 ◽  
pp. 1-14 ◽  
Author(s):  
Szu-Hsien Peng

The purpose of this study is to model the flow movement in an idealized dam-break configuration. One-dimensional and two-dimensional motion of a shallow flow over a rigid inclined bed is considered. The resulting shallow water equations are solved by finite volumes using the Roe and HLL schemes. At first, the one-dimensional model is considered in the development process. With conservative finite volume method, splitting is applied to manage the combination of hyperbolic term and source term of the shallow water equation and then to promote 1D to 2D. The simulations are validated by the comparison with flume experiments. Unsteady dam-break flow movement is found to be reasonably well captured by the model. The proposed concept could be further developed to the numerical calculation of non-Newtonian fluid or multilayers fluid flow.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Nugool Sataporn ◽  
Worasait Suwannik ◽  
Montri Maleewong

Compute Unified Device Architecture (CUDA) implementations are presented of a well-balanced finite volume method for solving a shallow water model. The CUDA platform allows programs to run parallel on GPU. Four versions of the CUDA algorithm are presented in addition to a CPU implementation. Each version is improved from the previous one. We present the following techniques for optimizing a CUDA program: limiting register usage, changing the global memory access pattern, and using loop unroll. The accuracy of all programs is investigated in 3 test cases: a circular dam break on a dry bed, a circular dam break on a wet bed, and a dam break flow over three humps. The last parallel version shows 3.84x speedup over the first CUDA implementation. We use our program to simulate a real-world problem based on an assumed partial breakage of the Srinakarin Dam located in Kanchanaburi province, Thailand. The simulation shows that the strong interaction between massive water flows and bottom elevations under wet and dry conditions is well captured by the well-balanced scheme, while the optimized parallel program produces a 57.32x speedup over the serial version.


The paper is dedicated to study a numerical model simulating dam-break based on two dimensional nonlinear shallow water equations (2D-NSWE). Finite Volume Method-Godunov type is applied to discretize this equation. Roe scheme is utilized to approximate Riemann problem, meanwhile method of flux difference splitting is implemented to construct numerical solvers of SWE. Besides, the semi implicit scheme is also invoked to solve friction term in case of high roughness coefficient. The proposed model is verified through a comparison between computed results and empirical data of two reference tests. A dam break flow over floodable area with different roughness coefficients is also researched. A total collapsed dam scenario of an arch dam-Nam Chien in Vietnam is simulated by the proposed model. Several hydraulic characteristics such as flood extent, arrival time and time histories of water depth at different gauges are estimated with different grid sizes.


1998 ◽  
Vol 374 ◽  
pp. 407-424 ◽  
Author(s):  
P. K. STANSBY ◽  
A. CHEGINI ◽  
T. C. D. BARNES

Experiments have been undertaken to investigate dam-break flows where a thin plate separating water at different levels is withdrawn impulsively in a vertically upwards direction. Depth ratios of 0, 0.1 and 0.45 were investigated for two larger depth values of 10 cm and 36 cm. The resulting sequence of surface profiles is shown to satisfy approximately Froude scaling. For the dry-bed case a horizontal jet forms at small times and for the other cases a vertical, mushroom-like jet occurs, none of which have been observed previously. We analyse the initial-release problem in which the plate is instantaneously removed or dissolved. Although this shows singular behaviour, jet-like formations are predicted. Artificially smoothing out the singularity enables a fully nonlinear, potential-flow computation to follow the jet formation for small times. There is qualitative agreement between theory and experiment.In the experiments, after a bore has developed downstream as a result of highly complex flow interactions, the surface profiles agree remarkably well with exact solutions of the shallow-water equations which assume hydrostatic pressure and uniform velocity over depth.


2020 ◽  
Vol 2 (1) ◽  
pp. 35
Author(s):  
Selahattin Kocaman ◽  
Stefania Evangelista ◽  
Giacomo Viccione ◽  
Hasan Güzel

Flood caused by a dam-breaking flow may be catastrophic for the downstream area due to the sudden discharge of large volumes of water. Besides the complex flow of the propagating dam-break wave, the presence of structures such as bridges and buildings yield free surfaces which can be accurately reproduced by means of three-dimensional Computational Fluid Dynamics (CFD) software. The prediction of the dam-break flow main features in the presence of obstacles has a crucial role in decreasing the damage. In this study, small-scale laboratory experiments were conducted to examine the problem with a single obstacle. Five ultrasonic sensors were used as measurement devices. Measurements were compared with the numerical results obtained with the FLOW-3D software, solving RANS equations with the k- turbulence closure model. A good agreement was observed.


2011 ◽  
Vol 05 (05) ◽  
pp. 401-428 ◽  
Author(s):  
PENGZHI LIN ◽  
YINNA WU ◽  
JUNLI BAI ◽  
QUANHONG LIN

Dam-break flows are simulated numerically by a two-dimensional shallow-water-equation model that combines a hydrodynamic module and a sediment transport module. The model is verified by available analytical solutions and experimental data. It is demonstrated that the model is a reliable tool for the simulation of various transient shallow water flows and the associated sediment transport and bed morphology on complex topography. The validated model is then applied to investigate the potential dam-break flows from Tangjiashan Quake Lake resulting from Wenchuan Earthquake in 2008. The dam-break flow evolution is simulated by using the model in order to provide the flooding patterns (e.g., arrival time and flood height) downstream. Furthermore, the sediment transport and bed morphology simulation is performed locally to study the bed variation under the high-speed dam-break flow.


Sign in / Sign up

Export Citation Format

Share Document