scholarly journals Sustained Reduction of Cerebellar Activity in Experimental Epilepsy

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Kim Rijkers ◽  
Véronique M. P. Moers-Hornikx ◽  
Roelof J. Hemmes ◽  
Marlien W. Aalbers ◽  
Yasin Temel ◽  
...  

Clinical and experimental evidence suggests a role for the cerebellum in seizure control, while no data are available on cerebellar activity between seizures. We hypothesized that interictal regional activity of the deep cerebellar nuclei is reduced in epilepsy and tested this in an animal model by using ΔFosB and cytochrome oxidase (COX) (immuno)histochemistry. The expression of these two markers of neuronal activity was analysed in the dentate nucleus (DN), interpositus nucleus (IN), and fastigial nucleus (FN) of the cerebellum of fully amygdala kindled rats that were sacrificed 48 hours after their last seizure. The DN and FN of kindled rats exhibited 25 to 29% less ΔFosB immunopositive cells than their respective counterpart in sham controls (P<0.05). COX expression in the DN and FN of kindled animals was reduced by 32 to 33% compared to respective control values (P<0.05). These results indicate that an epileptogenic state is characterized by decreased activity of deep cerebellar nuclei, especially the DN and FN. Possible consequences may include a decreased activation of the thalamus, contributing to further seizure spread. Restoration of FN activity by low frequency electrical stimulation is suggested as a possible treatment option in chronic epilepsy.

2019 ◽  
Vol 13 ◽  
Author(s):  
Letizia Moscato ◽  
Ileana Montagna ◽  
Licia De Propris ◽  
Simona Tritto ◽  
Lisa Mapelli ◽  
...  

2004 ◽  
Vol 91 (3) ◽  
pp. 1240-1249 ◽  
Author(s):  
Joël Monzée ◽  
Trevor Drew ◽  
Allan M. Smith

A single monkey was trained to perform a grasp, lift, and hold task in which a stationary hand- held object was sometimes subjected to brief, predictable force-pulse perturbations. The displacement, grip, and lifting forces were measured as well the three-dimensional forces and torques to quantify specific motor deficits after reversible inactivation of the cerebellar nuclei. A prior single-cell recording study in the same monkey provided the stereotaxic coordinates used to guide intranuclear injections of muscimol. In total, 34 penetrations were performed at 28 different loci throughout the cerebellar nuclei. On each penetration, two 1.0-μl injections of 5 μg/μl muscimol, were made 1.0 mm apart either within the nuclei or in the white matter just lateral or posterior to the dentate nucleus. Injections in the region corresponding to the anterior interpositus nucleus produced pronounced dynamic tremor and dysmetric movements of the ipsilateral arm when the animal performed unrestrained reaching and grasping movements. In contrast, no relatively short-latency (15-20 min.) deficits were observed after injection in the dentate nucleus, although some effects were observed after several hours. When tested in a primate chair with the forearm supported and restrained at the wrist and elbow, the monkey performed the lift and hold task without tremor or dysmetria. However, with the restraint removed, the forces and torques applied to the manipulandum were poorly controlled and erratic. The monkey's arm was ataxic and a 5-Hz intention tremor was clearly visible. In addition, the animal was generally unable to compensate for the predictable perturbations and the anticipatory grip force increases were absent. However, overall the results suggest that reversible cerebellar nuclear inactivation with muscimol has little effect on isolated distal movements of the wrist and fingers.


Author(s):  
Letizia Moscato ◽  
Ileana Montagna ◽  
Licia De Propris ◽  
Simona Tritto ◽  
Lisa Mapelli ◽  
...  

Author(s):  
Frederik Grosse ◽  
Stefan Mark Rueckriegel ◽  
Ulrich-Wilhelm Thomale ◽  
Pablo Hernáiz Driever

Abstract Purpose Diaschisis of cerebrocerebellar loops contributes to cognitive and motor deficits in pediatric cerebellar brain tumor survivors. We used a cerebellar white matter atlas and hypothesized that lesion symptom mapping may reveal the critical lesions of cerebellar tracts. Methods We examined 31 long-term survivors of pediatric posterior fossa tumors (13 pilocytic astrocytoma, 18 medulloblastoma). Patients underwent neuronal imaging, examination for ataxia, fine motor and cognitive function, planning abilities, and executive function. Individual consolidated cerebellar lesions were drawn manually onto patients’ individual MRI and normalized into Montreal Neurologic Institute (MNI) space for further analysis with voxel-based lesion symptom mapping. Results Lesion symptom mapping linked deficits of motor function to the superior cerebellar peduncle (SCP), deep cerebellar nuclei (interposed nucleus (IN), fastigial nucleus (FN), ventromedial dentate nucleus (DN)), and inferior vermis (VIIIa, VIIIb, IX, X). Statistical maps of deficits of intelligence and executive function mapped with minor variations to the same cerebellar structures. Conclusion We identified lesions to the SCP next to deep cerebellar nuclei as critical for limiting both motor and cognitive function in pediatric cerebellar tumor survivors. Future strategies safeguarding motor and cognitive function will have to identify patients preoperatively at risk for damage to these critical structures and adapt multimodal therapeutic options accordingly.


Epilepsia ◽  
2021 ◽  
Author(s):  
Abhijeet Gummadavelli ◽  
Reese Martin ◽  
Derek Goshay ◽  
Lim‐Anna Sieu ◽  
Jingwen Xu ◽  
...  

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Hugues Berry ◽  
Stéphane Genet

AbstractThe neurons of the deep cerebellar nuclei (DCNn) represent the main functional link between the cerebellar cortex and the rest of the central nervous system. Therefore, understanding the electrophysiological properties of DCNn is of fundamental importance to understand the overall functioning of the cerebellum. Experimental data suggest that DCNn can reversibly switch between two states: the firing of spikes (F state) and a stable depolarized state (SD state). We introduce a new biophysical model of the DCNn membrane electro-responsiveness to investigate how the interplay between the documented conductances identified in DCNn give rise to these states. In the model, the F state emerges as an isola of limit cycles, i.e. a closed loop of periodic solutions disconnected from the branch of SD fixed points. This bifurcation structure endows the model with the ability to reproduce the $\text{F}\to \text{SD}$ F → SD transition triggered by hyperpolarizing current pulses. The model also reproduces the $\text{F}\to \text{SD}$ F → SD transition induced by blocking Ca currents and ascribes this transition to the blocking of the high-threshold Ca current. The model suggests that intracellular current injections can trigger fully reversible $\text{F}\leftrightarrow \text{SD}$ F ↔ SD transitions. Investigation of low-dimension reduced models suggests that the voltage-dependent Na current is prominent for these dynamical features. Finally, simulations of the model suggest that physiological synaptic inputs may trigger $\text{F}\leftrightarrow \text{SD}$ F ↔ SD transitions. These transitions could explain the puzzling observation of positively correlated activities of connected Purkinje cells and DCNn despite the former inhibit the latter.


2018 ◽  
Vol 2018 ◽  
pp. 1-8 ◽  
Author(s):  
Jessica Monaco ◽  
Lorenzo Rocchi ◽  
Francesca Ginatempo ◽  
Egidio D'Angelo ◽  
John C. Rothwell

Associative learning of sensorimotor contingences, as it occurs in eyeblink classical conditioning (EBCC), is known to involve the cerebellum, but its mechanism remains controversial. EBCC involves a sequence of learning processes which are thought to occur in the cerebellar cortex and deep cerebellar nuclei. Recently, the extinction phase of EBCC has been shown to be modulated after one week by cerebellar continuous theta-burst stimulation (cTBS). Here, we asked whether cerebellar cTBS could affect retention and reacquisition of conditioned responses (CRs) tested immediately after conditioning. We also investigated a possible lateralized cerebellar control of EBCC by applying cTBS on both the right and left cerebellar hemispheres. Both right and left cerebellar cTBSs induced a statistically significant impairment in retention and new acquisition of conditioned responses (CRs), the disruption effect being marginally more effective when the left cerebellar hemisphere was stimulated. These data support a model in which cTBS impairs retention and reacquisition of CR in the cerebellum, possibly by interfering with the transfer of memory to the deep cerebellar nuclei.


1996 ◽  
Vol 76 (1) ◽  
pp. 59-68 ◽  
Author(s):  
W. Morishita ◽  
B. R. Sastry

1. The mechanisms underlying long-term depression (LTD) of gamma-aminobutyric acid-A (GABAA) receptor-mediated synaptic transmission induced by 10-Hz stimulation of the inhibitory afferents were investigated using perforated and whole cell voltage-clamp recordings from neurons of the deep cerebellar nuclei (DCN). 2. LTD of inhibitory postsynaptic currents (IPSCs) was reliably induced when the 10-Hz stimulation was delivered under current-clamp conditions where the postsynaptic neuronal membrane was allowed to depolarize. 3. Currents elicited by local applications of the GABAA receptor agonist, 4,5,6,7-tetrahydroisoxazolo [5,4-c]pyridin-3-ol hydrochloride (THIP) were also depressed during LTD. 4. LTD could be induced heterosynaptically and did not require the activation of GABAA receptors during the 10-Hz stimulation. 5. In cells loaded with QX-314 and superfused with media containing 6-cyano-7-nitroquinoxaline-2,3-dione (CNQX) and 2-amino-5-phosphonovaleric acid (APV), a series of depolarizing pulses (50 mV, 200 ms) induced a sustained depression of the IPSC. However, this was not observed in cells recorded with high bis-(o-aminophenoxy)-N,N,N',N'-tetraacetic acid (BAPTA)-containing pipette solutions or when they were exposed to the L-type Ca2+ channel antagonist, nitrendipine. 6. The 10-Hz-induced LTD was also inhibited by BAPTA and was significantly reduced when DCN cells were loaded with microcystin LR or treated with okadaic acid, both inhibitors of protein phosphatases. 7. These results indicate that increases in postsynaptic [Ca2+] and phosphatase activity can reduce the efficacy of GABAA receptor-mediated synaptic transmission.


Sign in / Sign up

Export Citation Format

Share Document