scholarly journals Water Yield Variation due to Forestry Change in the Head-Water Area of Heihe River Basin, Northwest China

2015 ◽  
Vol 2015 ◽  
pp. 1-8 ◽  
Author(s):  
Feng Wu ◽  
Jinyan Zhan ◽  
Jiancheng Chen ◽  
Chao He ◽  
Qian Zhang

Understanding the effects of forestation on the hydrological process is crucial to protecting water resources. In this study, the upstream Heihe River Basin is selected as the study area, which is the water source area of the whole basin. The grassland and forest are the main land use types, the proportion of which in the total land area is 21% and 50%, respectively. Firstly, a scenario of forestation was designed with the actual land cover data in 1980. Then a scenario with simulated land cover data in 1980 was established, in which the forest area increases by 12%. Thereafter a hydrological simulation was carried out with the actual and simulated land cover maps and the climate observation data during 1980–2010. The results suggested that the total water yield increased by 12.57 mm under the scenario with land use change during 1980–2010 compared with the simulation with the actual land cover in 1980. However, the results also indicated that the surface runoff reduced by 22.17 mm during the same period, indicating the forest land has “sponge” effects on the water resource in the mountainous watershed. These results may provide important information that supports operational practices, such as forest regeneration programs and watershed restoration.

2014 ◽  
Vol 15 (4) ◽  
pp. 1560-1574 ◽  
Author(s):  
Xiaoduo Pan ◽  
Xin Li ◽  
Kun Yang ◽  
Jie He ◽  
Yanlin Zhang ◽  
...  

Abstract Development of an accurate precipitation dataset is of primary importance for regional hydrological process studies and water resources management. Here, four regional precipitation products are evaluated for the Heihe River basin (HRB): 1) a spatially and temporally disaggregated Climate Prediction Center Merged Analysis of Precipitation (CMAP) at 0.25° spatial resolution (DCMAP); 2) a fusion product obtained by merging China Meteorological Administration station data and Tropical Rainfall Measuring Mission precipitation data at 0.1° spatial resolution supported by the Institute of Tibetan Plateau Research (ITP), Chinese Academy of Sciences (ITP-F); 3) a disaggregated CMAP downscaled by a statistical meteorological model tool at 1-km spatial resolution (DCMAP–MicroMet); and 4) a Weather Research and Forecasting (WRF) Model simulation with 5-km resolution (WRF-P). The validation metrics include spatial pattern, temporal pattern, error analysis with respect to observation data, and precipitation event verification indicators. The results indicate that 1) precipitation from the DCMAP product may not be suitable for water cycle studies at the watershed scale because of its coarser spatial resolution and 2) ITP-F, WRF-P, and DCMAP–MicroMet precipitation products generally show similar spatial–temporal patterns in HRB but have varying performances between different subbasins.


2014 ◽  
Vol 7 (1) ◽  
pp. 366-383 ◽  
Author(s):  
Xiaoli Geng ◽  
Xinsheng Wang ◽  
Haiming Yan ◽  
Qian Zhang ◽  
Gui Jin

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Feng Wu ◽  
Jinyan Zhan ◽  
Hongbo Su ◽  
Haiming Yan ◽  
Enjun Ma

This study evaluated hydrological impacts of potential climate and land use changes in Heihe River Basin of Northwest China. The future climate data for the simulation with Soil and Water Assessment Tool (SWAT) were prepared using a dynamical downscaling method. The future land uses were simulated with the Dynamic Land Use System (DLS) model by establishing Multinomial Logistic Regression (MNL) model for six land use types. In 2006–2030, land uses in the basin will experience a significant change with a prominent increase in urban areas, a moderate increase in grassland, and a great decrease in unused land. Besides, the simulation results showed that in comparison to those during 1981–2005 the temperature and precipitation during 2006–2030 will change by +0.8°C and +10.8%, respectively. The land use change and climate change will jointly make the water yield change by +8.5%, while they will separately make the water yield change by −1.8% and +9.8%, respectively. The predicted large increase in future precipitation and the corresponding decrease in unused land will have substantial impacts on the watershed hydrology, especially on the surface runoff and streamflow. Therefore, to mitigate negative hydrological impacts and utilize positive impacts, both land use and climate changes should be considered in water resource planning for the Heihe River Basin.


Water ◽  
2021 ◽  
Vol 13 (19) ◽  
pp. 2658
Author(s):  
Rui Luo ◽  
Shiliang Yang ◽  
Yang Zhou ◽  
Pengqun Gao ◽  
Tianming Zhang

A key challenge to the sustainability and security of grassland capacity is the protection of water-related ecosystem services (WESs). With the change of land use, the supply of aquatic ecosystem services has changed, and the grassland-carrying capacity has been affected. However, the correlation mechanism between WESs and the grassland-carrying capacity is not clear. In this study, we used the InVEST(Integrated Valuation of Ecosystem Services and Tradeoffs) model to evaluate the impact of land-use change on WESs, and made a tradeoff analysis between WESs and grassland-carrying capacity. Considering that the Heihe River Basin (HRB) was an important grassland vegetation zone, which was a milestone for the development of animal husbandry in China, HRB was taken as a case. The main findings are as follows: (1) the spatial distribution of WESs shows the dissimilation rule, the upper reaches are the main water yield area, the soil retention is weakening in the middle and lower reaches, and the pollution has further increased in the middle and upper reaches. (2) The carrying capacity of animal husbandry decreased in the upper reaches, increased in Shandan County and Zhangye City in the middle reaches, and decreased sharply in other regions. (3) There was a positive correlation between the livestock-carrying capacity and nitrogen export in 2018, which was increasing. As the change of land use has changed the evapotranspiration structure, WESs have undergone irreversible changes. Meanwhile, the development of large-scale irrigated farmland and human activities would be the source of a further intensification of regional soil erosion and water pollution. Therefore, it is necessary to trade off the WESs and animal husbandry under land-use change. This paper revealed how WESs changed from 2000 to 2018, the characteristics of the changes in the spatial and temporal distribution, and the carrying capacity. It aims to provide a scientific basis for coordinating the contradiction between grassland and livestock resources, improving the regional ecological security situation, and carrying out ecosystem management.


Sign in / Sign up

Export Citation Format

Share Document