scholarly journals Tree Diversity and Community Composition of the Tutong White Sands, Brunei Darussalam: A Rare Tropical Heath Forest Ecosystem

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Hazimah Din ◽  
Faizah Metali ◽  
Rahayu Sukmaria Sukri

Bornean heath (Kerangas) forests are a unique and increasingly rare tropical forest ecosystem that remains little studied. We quantified tree floristic diversity inKerangasforests in the Tutong White Sands, Brunei Darussalam, and investigated the influence of soil and environmental variables on community composition. Six 20 m × 20 m plots were established, where all trees of ≥5 cm diameter at breast height (DBH) were identified and measured to determine stem diameter and basal area. We determined pH, gravimetric water content, and concentrations of total nitrogen (N) and phosphorus (P) in topsoil, as well as litter depth and percentage canopy openness. A total of 296 trees were recorded, representing 78 species in 59 genera and 38 families. Stem diameter, basal area, species richness, and species diversity differed significantly among the six plots. The NMDS ordination revealed that differences in tree community compositions were significantly associated with total N concentrations and percentage canopy openness. Despite the small sampling area, we recorded several Bornean endemic tree species (16/78 tree species; 20.5%), including several IUCN Red List endangered and vulnerable species. Our results illustrate the potentially high conservation value of theKerangasforests in the Tutong White Sands and highlight the urgent need to protect and conserve this area.

2021 ◽  
Author(s):  
Yihan Cai ◽  
Takahiro Nishimura ◽  
Hideyuki Ida ◽  
Mitsuru Hirota

<p> Soil respiration (Rs) is the second largest carbon flux between the atmosphere and terrestrial ecosystem. Because of the large proportion, even small change in Rs would considerably impact the global carbon cycle. Therefore, it is important to accurately estimate Rs by taking its spatial and temporal variation into consideration. While the temporal variation of Rs and its controlling factors have been well-described, large unexplainable part still has been remained in the spatial variation of Rs especially in the forest ecosystems with complex structures. The objective of this study is to fill the knowledge gap about spatial variation of Rs and its controlling factors in a typical mature beech forest in Japan. Hypotheses of this study were, 1) Rs would show large spatial variation in the mature beech forest, 2) the spatial variation of Rs was mainly influenced by soil water content (SWC) and soil temperature (ST), 3) the two key factors were determined by the forest structures. This study was conducted in a 1- ha permanent study plot in the mature beech forest with significant gap-mosaic structures. To examine these hypotheses, Rs, SWC, ST and parameters related to forest structure, i.e. sum of basal area, diameter at breast height, number of trees, number of species within a radius of 5 m from the Rs measurement points, and canopy openness were measured at 121 points in different season between 2012 to 2013. In this study, all the measurements of Rs were conducted by using alkali-absorption technique.</p><p> Coefficient of variation of Rs was between 25 - 28 % which was similar to that of SWC in all the measurements. The spatial variation of Rs was relatively higher in July, August and September than that in June and October. There was no significant relationship in the spatial variation between Rs and ST in all the measurements, meanwhile, Rs was well explained by SWC in measurements conducted in August, September and October. Multiple linear regression analysis indicated that canopy openness and sum of basal area showed significant positive and negative correlation with SWC, respectively. And canopy openness explained SWC much more than sum of basal area did. This result suggested that SWC, the key factor determined the spatial variation of Rs, cannot be only explained by stems distribution and their characteristics, but also canopy architecture in the forest ecosystem.</p>


2010 ◽  
Vol 40 (11) ◽  
pp. 2164-2174 ◽  
Author(s):  
Sarah E. Stehn ◽  
Christopher R. Webster ◽  
Janice M. Glime ◽  
Michael A. Jenkins

We investigated the influence of fine-scale elevational gradients and overstory disturbance on bryophyte distribution, diversity, and community composition. Bryophyte species cover and richness were sampled across 60 randomly selected plots within high-elevation spruce–fir ( Picea – Abies ) forests of Great Smoky Mountains National Park. Ordination and regression analyses revealed a fine-scale elevation gradient (700 m) in bryophyte community composition. Observed changes in bryophyte diversity and community composition were also associated with variation in deciduous basal area and thus litter composition, the prevalence of herbaceous plants, and the degree of canopy openness resulting from balsam woolly adelgid ( Adelges piceae Ratz.) infestation. Although overstory disturbances, such as those caused by the adelgid, create suitable substrate for bryophyte colonization, the corresponding increase in light availability and deciduous basal area may alter bryophyte diversity and community assemblages.


2015 ◽  
Vol 32 (1) ◽  
pp. 1-21 ◽  
Author(s):  
Julian M. Norghauer ◽  
Gregory Röder ◽  
Gaëtan Glauser

Abstract:Small mammals can impede tree regeneration by injuring seedlings and saplings in several ways. One fatal way is by severing their stems, but apparently this type of predation is not well-studied in tropical rain forest. Here, we report on the incidence of ‘stem-cutting’ to new, wild seedlings of two locally dominant, canopy tree species monitored in 40 paired forest understorey and gap-habitat areas in Korup, Cameroon following a 2007 masting event. In gap areas, which are required for the upward growth and sapling recruitment of both species, 137 seedlings of the long-lived, light-demanding, fast-growing large tropical tree (Microberlinia bisulcata) were highly susceptible to stem-cutting (83% of deaths) — it killed 39% of all seedlings over a c. 2-y period. In stark contrast, seedlings of the more shade-tolerant, slower-growing tree species (Tetraberlinia bifoliolata) were hardly attacked (4.3%). In the understorey, however, stem-cutting was virtually absent. Across the gap areas, the incidence of stem-cutting of M. bisulcata seedlings showed significant spatial variation that could not be explained significantly by either canopy openness or Janzen–Connell type effects (proximity and basal area of conspecific adult trees). To examine physical and chemical traits that might explain the species difference to being cut, bark and wood tissues were collected from a separate sample of seedlings in gaps (i.e. not monitored for stem-cutting). These analyses suggested that, compared with T. bifoliolata, the lower stem density, higher Mg and K and fatty acid concentrations in bark, and fewer phenolic and terpene compounds in M. bisulcata seedlings made them more palatable and attractive to small-mammal predators, likely rodents. We conclude that selective stem-cutting is a potent countervailing force to the current local canopy dominance of the grove-forming M. bisulcata by limiting the recruitment and abundance of its saplings. Given the ubiquity of gaps and ground-dwelling rodents in pantropical forests, it would be surprising if this form of lethal browsing was restricted to Korup.


2020 ◽  
Vol 14 (1) ◽  
pp. 34
Author(s):  
Faezah Pardi

This study was conducted at Pulau Jerejak, Penang to determine the floristic variation of its tree communities. A 0.5-hectare study plot was established and divided into 11 subplots. A total of 587 trees with diameter at breast height (DBH) of 5 cm and above were measured, identified and recorded. The tree communities comprised of 84 species, 63 genera and 32 families. The Myrtaceae was the most speciose family with 10 recorded species while Syzgium glaucum (Myrtaceae) was the most frequent species. The Myrtaceae recorded the highest density of 306 individuals while Syzgium glaucum (Myrtaceae) had the highest species density of 182 individuals. Total tree basal area (BA) was 21.47 m2/ha and family with the highest BA was Myrtaceae with 5.81 m2/ha while at species level, Syzgium glaucum (Myrtaceae) was the species with the highest total BA in the plot with value of 4.95 m2/ha. The Shannon˗Weiner Diversity Index of tree communities showed a value of 3.60 (H'max = 4.43) and Evenness Index of 0.81 which indicates high uniformity of tree species. The Margalef Richness Index (R') revealed that the tree species richness was 13.02. Myrtaceae had the highest Importance Value of 20.4%. The Canonical Correspondence Analysis (CCA) showed that Diospyros buxifolia (Ebenaceae) and Pouteria malaccensis (Sapotaceae) were strongly correlated to low pH. Dysoxylum cauliflorum (Meliaceae) and Eriobotrya bengalensis (Rosaceae) were correlated to phosphorus (P) and calcium ion (Ca2+), respectively. Therefore, the trees species composition at Pulau Jerejak showed that the biodiversity is high and conservation action should be implemented to protect endangered tree species. Keywords: Floristic variation; Tree communities; Trees composition; Pulau Jerejak; Species diversity


Author(s):  
Barry T. Wilson ◽  
Andrew J. Lister ◽  
Rachel I. Riemann ◽  
Douglas M. Griffith

1970 ◽  
Vol 20 ◽  
Author(s):  
R. Goossens

Contribution to the automation of the calculations involving  the forest inventory with the aid of an office computer - In this contribution an attempt was made to perform the  calculations involving the forest inventory by means of an office computer  Olivetti P203.     The general program (flowchart 1), identical for all tree species except  for the values of the different parameters, occupies the tracks A and B of a  magnetic card used with this computer. For each tree species one magnetic  card is required, while some supplementary cards are used for the  subroutines. The first subroutine (flowchart 1) enables us to preserve  temporarily the subtotals between two tree species (mixed stands) and so  called special or stand cards (SC). After the last tree species the totals  per ha are calculated and printed on the former, the average trees occuring  on the line below. Appendix 1 gives an example of a similar form resulting  from calculations involving a sampling in a mixed stand consisting of Oak  (code 11), Red oak (code 12), Japanese larch (code 24) and Beech (code 13).  On this form we find from the left to the right: the diameter class (m), the  number of trees per ha, the basal area (m2/ha), the current annual increment  of the basal area (m2/year/ha), current annual volume increment (m3/year/ha),  the volume (m3/ha) and the money value of the standing trees (Bfr/ha). On the  line before the last, the totals of the quantities mentioned above and of all  the tree species together are to be found. The last line gives a survey of  the average values dg, g, ig, ig, v and w.     Besides this form each stand or plot has a so-called 'stand card SC' on  wich the totals cited above as well as the area of the stand or the plot and  its code are stored. Similar 'stand card' may replace in many cases  completely the classical index cards; moreover they have the advantage that  the data can be entered directly into the computer so that further  calculations, classifications or tabling can be carried out by means of an  appropriate program or subroutine. The subroutine 2 (flowchart 2) illustrates  the use of similar cards for a series of stands or eventually a complete  forest, the real values of the different quantities above are calculated and  tabled (taking into account the area). At the same time the general totals  and the general mean values per ha, as well as the average trees are  calculated and printed. Appendix 2 represents a form resulting from such  calculations by means of subroutine 2.


2021 ◽  
Vol 14 ◽  
pp. 194008292199541
Author(s):  
Xavier Haro-Carrión ◽  
Bette Loiselle ◽  
Francis E. Putz

Tropical dry forests (TDF) are highly threatened ecosystems that are often fragmented due to land-cover change. Using plot inventories, we analyzed tree species diversity, community composition and aboveground biomass patterns across mature (MF) and secondary forests of about 25 years since cattle ranching ceased (SF), 10–20-year-old plantations (PL), and pastures in a TDF landscape in Ecuador. Tree diversity was highest in MF followed by SF, pastures and PL, but many endemic and endangered species occurred in both MF and SF, which demonstrates the importance of SF for species conservation. Stem density was higher in PL, followed by SF, MF and pastures. Community composition differed between MF and SF due to the presence of different specialist species. Some SF specialists also occurred in pastures, and all species found in pastures were also recorded in SF indicating a resemblance between these two land-cover types even after 25 years of succession. Aboveground biomass was highest in MF, but SF and Tectona grandis PL exhibited similar numbers followed by Schizolobium parahyba PL, Ochroma pyramidale PL and pastures. These findings indicate that although species-poor, some PL equal or surpass SF in aboveground biomass, which highlights the critical importance of incorporating biodiversity, among other ecosystem services, to carbon sequestration initiatives. This research contributes to understanding biodiversity conservation across a mosaic of land-cover types in a TDF landscape.


Forests ◽  
2021 ◽  
Vol 12 (2) ◽  
pp. 129
Author(s):  
Tamalika Chakraborty ◽  
Albert Reif ◽  
Andreas Matzarakis ◽  
Somidh Saha

European beech (Fagus sylvatica L.) trees are becoming vulnerable to drought, with a warming climate. Existing studies disagree on how radial growth varies in European beech in response to droughts. We aimed to find the impact of multiple droughts on beech trees’ annual radial growth at their ecological drought limit created by soil water availability in the forest. Besides, we quantified the influence of competition and canopy openness on the mean basal area growth of beech trees. We carried out this study in five near-natural temperate forests in three localities of Germany and Switzerland. We quantified available soil water storage capacity (AWC) in plots laid in the transition zone from oak to beech dominated forests. The plots were classified as ‘dry’ (AWC < 60 mL) and ‘less-dry’ (AWC > 60 mL). We performed dendroecological analyses starting from 1951 in continuous and discontinuous series to study the influence of climatic drought (i.e., precipitation-potential evapotranspiration) on the radial growth of beech trees in dry and less-dry plots. We used observed values for this analysis and did not use interpolated values from interpolated historical records in this study. We selected six drought events to study the resistance, recovery, and resilience of beech trees to drought at a discontinuous level. The radial growth was significantly higher in less-dry plots than dry plots. The increase in drought had reduced tree growth. Frequent climatic drought events resulted in more significant correlations, hence, increased the dependency of tree growth on AWC. We showed that the recovery and resilience to climatic drought were higher in trees in less-dry plots than dry plots, but it was the opposite for resistance. The resistance, recovery, and resilience of the trees were heterogeneous between the events of drought. Mean growth of beech trees (basal area increment) were negatively impacted by neighborhood competition and positively influenced by canopy openness. We emphasized that beech trees growing on soil with low AWC are at higher risk of growth decline. We concluded that changes in soil water conditions even at the microsite level could influence beech trees’ growth in their drought limit under the changing climate. Along with drought, neighborhood competition and lack of light can also reduce beech trees’ growth. This study will enrich the state of knowledge about the ongoing debate on the vulnerability of beech trees to drought in Europe.


Sign in / Sign up

Export Citation Format

Share Document