scholarly journals Ginsenoside Rb1 Treatment Attenuates Pulmonary Inflammatory Cytokine Release and Tissue Injury following Intestinal Ischemia Reperfusion Injury in Mice

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Ying Jiang ◽  
Zhen Zhou ◽  
Qing-tao Meng ◽  
Qian Sun ◽  
Wating Su ◽  
...  

Objective. Intestinal ischemia reperfusion (II/R) injury plays a critical role in remote organ dysfunction, such as lung injury, which is associated with nuclear factor erythroid 2-related factor 2 (Nrf2)/heme oxygenase-1 (HO-1) signaling pathway. In the present study, we tested whether ginsenoside Rb1 attenuated II/R induced lung injury by Nrf2/HO-1 pathway.Methods. II/R injury was induced in male C57BL/6J mice by 45 min of superior mesenteric artery (SMA) occlusion followed by 2 hours of reperfusion. Ginsenoside Rb1 was administrated prior to reperfusion with or without ATRA (all-transretinoic acid, the inhibitor of Nrf2/ARE signaling pathway) administration before II/R.Results. II/R induced lung histological injury, which is accompanied with increased levels of malondialdehyde (MDA), interleukin- (IL-) 6, and tumor necrosis factor- (TNF-)αbut decreased levels of superoxide dismutase (SOD) and IL-10 in the lung tissues. Ginsenoside Rb1 reduced lung histological injury and the levels of TNF-αand MDA, as well as wet/dry weight ratio. Interestingly, the increased Nrf2 and HO-1 expression induced by II/R in the lung tissues was promoted by ginsenoside Rb1 treatment. All these changes could be inhibited or prevented by ATRA.Conclusion. Ginsenoside Rb1 is capable of ameliorating II/R induced lung injuries by activating Nrf2/HO-1 pathway.

2011 ◽  
Vol 26 (6) ◽  
pp. 438-444 ◽  
Author(s):  
Carlos Eduardo Marqui ◽  
Helga Cristina Almeida Silva ◽  
David Ferez ◽  
Sâmia Santos Cavassani ◽  
Juliana Britto Moraes ◽  
...  

PURPOSE: To investigate the protective effect of pentoxifylline against the lung injury observed after intestinal ischemia (I) followed by a period of reperfusion (R). METHODS: Twenty-eight male Wistar rats were equally divided into 4 experimental groups and operated under ketamine-xylazine anesthesia. (1) Sham: falsely-operated animals; (2) SS+IR: intestinal ischemia was accomplished by clipping the superior mesenteric artery during 60 minutes, with an administration of a standard volume of saline solution (SS) 5 min before the end of the ischemia period; the clip was then releases or a 120-min period of reperfusion; (3) I+PTX+R: ischemia as above, PTX was administered (25 mg/kg) and the gut reperfused as above; (4) PTX+I+PTX+R: Five minutes before arterial occlusion PTX was administered; the superior mesenteric artery was then clipped for 60 minutes. After 55-min ischemia, an additional dosis of PTX was administered; the clip was removed for reperfusion as above. At the 60th min of reperfusion a third dosis of PTX was administered. RESULTS: PTX markedly attenuated lung injury as manifested by significant decreases (all P<0.001 as compared with the SS+IR group) of pulmonary wet/dry tissue weight ratio, total protein content, myeloperoxidase activity and tumor necrosis factor-alpha. Moreover, it was apparent that in the group PTX+I+PTX+R the improvements have been even more significant. CONCLUSION: PTX exerted a protective effect on the lung from the injuries caused by intestinal ischemia/reperfusion.


2002 ◽  
Vol 183 (1) ◽  
pp. 70-74 ◽  
Author(s):  
M.Ayhan Kuzu ◽  
Cüneyt Köksoy ◽  
Işınsu Kuzu ◽  
Ismet Gürhan ◽  
Hakan Ergün ◽  
...  

2021 ◽  
Vol 263 ◽  
pp. 291
Author(s):  
Georgia Kostopanagiotou ◽  
Efthimios Avgerinos ◽  
Konstantinos Kostopanagiotou ◽  
Nikolaos Arkadopoulos ◽  
Ioanna Andreadou ◽  
...  

2018 ◽  
Vol 46 (2) ◽  
pp. 781-792 ◽  
Author(s):  
DongDong Chai ◽  
Lei Zhang ◽  
SiWei Xi ◽  
YanYong Cheng ◽  
Hong Jiang ◽  
...  

Background/Aims: Nuclear erythroid 2-related factor-2 (Nrf2) is a major stress-response transcription factor that has been implicated in regulating ischemic angiogenesis. We investigated the effects of Nrf2 in regulating revascularization and modulating acute lung injury. Methods: The expression of Nrf2 and sirtuin1 (Sirt1) was assessed in lung tissue by western blotting and immunofluorescence staining after intestinal ischemia/reperfusion (IIR) in Nrf2–/– and wild-type (WT) mice. The involvement of Nrf2 in angiogenesis, cell viability, and migration was investigated in human pulmonary microvascular endothelial cells (PMVECs). Additionally, the influence of Nrf2 expression on NOX pathway activation was measured in PMVECs after oxygen–glucose deprivation/reoxygenation. Results: We found activation and nuclear accumulation of Nrf2 in lung tissue after IIR. Compared to IIR in WT mice, IIR in Nrf2–/– mice significantly enhanced leukocyte infiltration and collagen deposit, and inhibited endothelial cell marker CD31 expression. Nrf2 upregulation and translocation into the nucleus stimulated by Sirt1 overexpression exhibited remission of histopathologic changes and enhanced CD31 expression. Nrf2 knockdown repressed non-phagocytic cell oxidase 4 (NOX4), hypoxia-inducible factor (HIF-1α) and vascular endothelial growth factor (VEGF) expression after IIR. Nrf2 upregulation by Sirt1 enhances NOX4, HIF-1α and VEGF expression after IIR in WT mice. Furthermore, Nrf2 knockdown suppressed cell viability, capillary tube formation and cell migration in PMVECs after oxygen–glucose deprivation/reoxygenation and also inhibited NOX4, HIF-1 and VEGF expression. Moreover, NOX4 knockdown in PMVECs decreased the levels of VEGF, HIF-1α and angiogenesis. Conclusion: Nrf2 stimulation by Sirt1 plays an important role in sustaining angiogenic potential through NOX4-mediated gene regulation.


Sign in / Sign up

Export Citation Format

Share Document