scholarly journals Broadband DOA Estimation Based on Nested Arrays

2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
Zhi-bo Shen ◽  
Chun-xi Dong ◽  
Yang-yang Dong ◽  
Guo-qing Zhao ◽  
Long Huang

Direction of arrival (DOA) estimation is a crucial problem in electronic reconnaissance. A novel broadband DOA estimation method utilizing nested arrays is devised in this paper, which is capable of estimating the frequencies and DOAs of multiple narrowband signals in broadbands, even though they may have different carrier frequencies. The proposed method converts the DOA estimation of multiple signals with different frequencies into the spatial frequency estimation. Then, the DOAs and frequencies are pair matched by sparse recovery. It is possible to significantly increase the degrees of freedom (DOF) with the nested arrays and the number of sources can be more than that of sensor array. In addition, the method can achieve high estimation precision without the two-dimensional search process in frequency and angle domain. The validity of the proposed method is verified by theoretic analysis and simulation results.

Sensors ◽  
2020 ◽  
Vol 20 (4) ◽  
pp. 994
Author(s):  
Baoping Wang ◽  
Junhao Zheng

Recently developed super nested array families have drawn much attention owing to their merits on keeping the benefits of the standard nested arrays while further mitigating coupling in dense subarray portions. In this communication, a new mutual coupling model for nested arrays is constructed. Analyzing the structure of the newly formed mutual coupling matrix, a transformation of the distorted steering vector to separate angular information from the mutual coupling coefficients is revealed. By this property, direction of arrival (DOA) estimates can be determined via a grid search for the minimum of a determinant function of DOA, which is induced by the rank reduction property. We also extend the robust DOA estimation method to accommodate the unknown mutual coupling and gain-phase mismatches in the nested array. Compared with the schemes of super nested array families on reducing the mutual coupling effects, the solutions presented in this paper has two advantages: (a) It is applicable to the standard nested arrays without rearranging the configuration to increase the inter-element spacing, alleviating the cross talk in dense uniform linear arrays (ULAs) as well as gain-phase errors in sparse ULA parts; (b) Perturbations in nested arrays are estimated in colored noise, which is significant but rarely discussed before. Simulations results corroborate the superiority of the proposed methods using fourth-order cumulants.


Sensors ◽  
2019 ◽  
Vol 19 (10) ◽  
pp. 2383 ◽  
Author(s):  
Yue Cui ◽  
Junfeng Wang ◽  
Jie Qi ◽  
Zhanying Zhang ◽  
Jinqi Zhu

An underdetermined direction of arrival (DOA) estimation method of wideband linear frequency modulated (LFM) signals is proposed without grid mismatch. According to the concentration property of LFM signal in the fractional Fourier (FRF) domain, the received sparse model of wideband signals with time-variant steering vector is firstly derived based on a coprime array. Afterwards, by interpolating virtual sensors, a virtual extended uniform linear array (ULA) is constructed with more degrees of freedom, and its covariance matrix in the FRF domain is recovered by employing sparse matrix reconstruction. Meanwhile, in order to avoid the grid mismatch problem, the modified atomic norm minimization is used to retrieve the covariance matrix with the consecutive basis. Different from the existing methods that approximately assume the frequency and the steering vector of the wideband signals are time-invariant in every narrowband frequency bin, the proposed method not only can directly solve more DOAs of LFM signals than the number of physical sensors with time-variant frequency and steering vector, but also obtain higher resolution and more accurate DOA estimation performance by the gridless sparse reconstruction. Simulation results demonstrate the effectiveness of the proposed method.


Sensors ◽  
2019 ◽  
Vol 19 (9) ◽  
pp. 2176 ◽  
Author(s):  
Xiaofeng Gao ◽  
Xinhong Hao ◽  
Ping Li ◽  
Guolin Li

In this paper, an improved two-dimensional (2-D) direction of arrival (DOA) estimation algorithm for L-shaped nested arrays is proposed. Unlike the approach for a classical nested array, which use the auto-correlation matrix (ACM) to increase the degrees of freedom (DOF), we utilize the cross-correlation matrix (CCM) of different sub-arrays to generate two long consecutive virtual arrays. These acquire a large number of DOF without redundant elements and eliminate noise effects. Furthermore, we reconstruct the CCM based on the singular value decomposition (SVD) operation in order to reduce the perturbation of noise for small numbers of samples. To cope with the matrix rank deficiency of the virtual arrays, we construct the full rank equivalent covariance matrices by using the output and its conjugate vector of virtual arrays. The unitary estimation of signal parameters via rotational invariance technique (ESPRIT) is then performed on the covariance matrices to obtain the DOA of incident signals with low computational complexity. Finally, angle pairing is achieved by deriving the equivalent signal vector of the virtual arrays using the estimated angles. Numerical simulation results show that the proposed algorithm not only provides more accurate 2-D DOA estimation performance with low complexity, but also achieves angle estimation for small numbers of samples compared to existing similar methods.


Author(s):  
Fei Zhang ◽  
Zijing Zhang ◽  
Aisuo Jin ◽  
Chuantang Ji ◽  
Yi Wang

AbstractAiming at the problem that traditional direction of arrival (DOA) estimation methods cannot handle multiple sources with high accuracy while increasing the degrees of freedom (DOF), a new method for 2-D DOA estimation based on coprime array MIMO radar (SA-MIMO-CA) is proposed. First of all, in order to ensure the accuracy of multi-source estimation when the number of elements is finite, a new coprime array model based on MIMO (MIMO-CA) is proposed. This method is based on a new MIMO array-based co-prime array model (MIMO-CA), which improves the accuracy of multi-source estimation when the number of array elements is limited, and obtains a larger array aperture with a smaller number of array elements, and improves the estimation accuracy of 2-D DOA. Finally, the effectiveness and reliability of the proposed SM-MIMO-CA method in improving the DOF of array and DOA accuracy are verified by experiments.


2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Tao Wu ◽  
Yiwen Li ◽  
Zhengxin Li ◽  
Yijie Huang ◽  
Jiwei Xu

Nested arrays are sparse arrays composed of subarrays with nonuniform sensor spacing. Compared with traditional uniform arrays, nested arrays have more degree of freedoms (DOFs) and larger apertures. In this paper, a nested array has been proposed as well as a direction-of-arrival (DOA) estimation method for two-dimensional (2D) incoherently distributed (ID) sources. A virtual array is firstly obtained through vectorization of the cross-correlation matrix of subarrays. Sensor positions of the virtual array and the optimal configuration of the nested array are derived next. Then rotational invariance relationship for generalized steering matrix of the virtual array with respect to nominal azimuth is deduced. According to the rotational invariance relationship, sparse representation model under l1-norm constraint is established, which is resolved by transferring the objective function to second-order cone constraints and combining a estimation residual error constraint for receive vector of the virtual array. Simulations are conducted to investigate the effectiveness of the proposed method in underdetermined situation and examine different experiment factors including SNR, snapshots, and angular spreads as well as sensor number of subarrays. Results show that the proposed method has better performance than uniform parallel arrays with the same number of sensors.


Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 218 ◽  
Author(s):  
Wei He ◽  
Xiao Yang ◽  
Yide Wang

The direction-of-arrivals (DOA) estimation with an unfolded coprime linear array (UCLA) has been investigated because of its large aperture and full degrees of freedom (DOFs). The existing method suffers from low resolution and high computational complexity due to the loss of the uniform property and the step of exhaustive peak searching. In this paper, an improved DOA estimation method for a UCLA is proposed. To exploit the uniform property of the subarrays, the diagonal elements of the two self-covariance matrices are averaged to enhance the accuracy of the estimated covariance matrices and therefore the estimation performance. Besides, instead of the exhaustive peak searching, the polynomial roots finding method is used to reduce the complexity. Compared with the existing method, the proposed method can achieve higher resolution and better estimation performance with lower computational complexity.


Sign in / Sign up

Export Citation Format

Share Document