scholarly journals A High-Resolution and Low-Complexity DOA Estimation Method with Unfolded Coprime Linear Arrays

Sensors ◽  
2019 ◽  
Vol 20 (1) ◽  
pp. 218 ◽  
Author(s):  
Wei He ◽  
Xiao Yang ◽  
Yide Wang

The direction-of-arrivals (DOA) estimation with an unfolded coprime linear array (UCLA) has been investigated because of its large aperture and full degrees of freedom (DOFs). The existing method suffers from low resolution and high computational complexity due to the loss of the uniform property and the step of exhaustive peak searching. In this paper, an improved DOA estimation method for a UCLA is proposed. To exploit the uniform property of the subarrays, the diagonal elements of the two self-covariance matrices are averaged to enhance the accuracy of the estimated covariance matrices and therefore the estimation performance. Besides, instead of the exhaustive peak searching, the polynomial roots finding method is used to reduce the complexity. Compared with the existing method, the proposed method can achieve higher resolution and better estimation performance with lower computational complexity.

Sensors ◽  
2016 ◽  
Vol 16 (9) ◽  
pp. 1367 ◽  
Author(s):  
Fenggang Sun ◽  
Bin Gao ◽  
Lizhen Chen ◽  
Peng Lan

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Aihua Liu ◽  
Qiang Yang ◽  
Xin Zhang ◽  
Weibo Deng

A method of direction-of-arrival (DOA) estimation using array interpolation is proposed in this paper to increase the number of resolvable sources and improve the DOA estimation performance for coprime array configuration with holes in its virtual array. The virtual symmetric nonuniform linear array (VSNLA) of coprime array signal model is introduced, with the conventional MUSIC with spatial smoothing algorithm (SS-MUSIC) applied on the continuous lags in the VSNLA; the degrees of freedom (DoFs) for DOA estimation are obviously not fully exploited. To effectively utilize the extent of DoFs offered by the coarray configuration, a compressing sensing based array interpolation algorithm is proposed. The compressing sensing technique is used to obtain the coarse initial DOA estimation, and a modified iterative initial DOA estimation based interpolation algorithm (IMCA-AI) is then utilized to obtain the final DOA estimation, which maps the sample covariance matrix of the VSNLA to the covariance matrix of a filled virtual symmetric uniform linear array (VSULA) with the same aperture size. The proposed DOA estimation method can efficiently improve the DOA estimation performance. The numerical simulations are provided to demonstrate the effectiveness of the proposed method.


Sensors ◽  
2020 ◽  
Vol 20 (7) ◽  
pp. 1914
Author(s):  
Jian Xie ◽  
Qiuping Wang ◽  
Yuexian Wang ◽  
Xin Yang

Digital communication signals in wireless systems may possess noncircularity, which can be used to enhance the degrees of freedom for direction-of-arrival (DOA) estimation in sensor array signal processing. On the other hand, the electromagnetic characteristics between sensors in uniform rectangular arrays (URAs), such as mutual coupling, may significantly deteriorate the estimation performance. To deal with this problem, a robust real-valued estimator for rectilinear sources was developed to alleviate unknown mutual coupling in URAs. An augmented covariance matrix was built up by extracting the real and imaginary parts of observations containing the circularity and noncircularity of signals. Then, the actual steering vector considering mutual coupling was reparameterized to make the rank reduction (RARE) property available. To reduce the computational complexity of two-dimensional (2D) spectral search, we individually estimated y-axis and x-axis direction-cosines in two stages following the principle of RARE. Finally, azimuth and elevation angle estimates were determined from the corresponding direction-cosines respectively. Compared with existing solutions, the proposed method is more computationally efficient, involving real-valued operations and decoupled 2D spectral searches into twice those of one-dimensional searches. Simulation results verified that the proposed method provides satisfactory estimation performance that is robust to unknown mutual coupling and close to the counterparts based on 2D spectral searches, but at the cost of much fewer calculations.


2021 ◽  
Author(s):  
Di Zhao ◽  
Weijie Tan ◽  
Zhongliang Deng ◽  
Gang Li

Abstract In this paper, we present a low complexity beamspace direction-of-arrival (DOA) estimation method for uniform circular array (UCA), which is based on the single measurement vectors (SMVs) via vectorization of sparse covariance matrix. In the proposed method, we rstly transform the signal model of UCA to that of virtual uniform linear array (ULA) in beamspace domain using the beamspace transformation (BT). Subsequently, by applying the vectorization operator on the virtual ULA-like array signal model, a new dimension-reduction array signal model consists of SMVs based on Khatri-Rao (KR) product is derived. And then, the DOA estimation is converted to the convex optimization problem. Finally, simulations are carried out to verify the eectiveness of the proposed method, the results show that without knowledge of the signal number, the proposed method not only has higher DOA resolution than subspace-based methods in low signal-to-noise ratio (SNR), but also has much lower computational complexity comparing other sparse-like DOA estimation methods.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Tao Wu ◽  
Pengtao Zhang ◽  
Yiwen Li ◽  
Yangjun Gao ◽  
Chaoqi Fu ◽  
...  

Aiming at two-dimensional (2D) coherent distributed (CD) sources, this paper has proposed a direction of arrival (DOA) tracking algorithm based on signal subspace updating under the uniform rectangular array (URA). First, based on the hypothesis of small angular spreads of distributed sources, the rotating invariant relations of the signal subspace of the receive vector of URA are derived. An ESPRIT-like method is constructed for DOA estimation using two adjacent parallel linear arrays of URA. Through the synthesis of estimation by multiple groups of parallel linear arrays within URA arrays, the DOA estimation method for 2D CD sources based on URA is obtained. Then, fast approximated power iteration (FAPI) subspace tracking algorithm is used to update the signal subspace. In this way, DOA tracking of 2D CD sources can be realized by DOA estimation through signal subspace updating. This algorithm has a low computational complexity and good real-time tracking performance. In addition, the algorithm can track multiple CD sources without knowing the angular signal distribution functions, which is robust to model errors.


Sensors ◽  
2018 ◽  
Vol 18 (9) ◽  
pp. 2788 ◽  
Author(s):  
Yuehao Guo ◽  
Xianpeng Wang ◽  
Wensi Wang ◽  
Mengxing Huang ◽  
Chong Shen ◽  
...  

In the paper, the estimation of joint direction-of-departure (DOD) and direction-of-arrival (DOA) for strictly noncircular targets in multiple-input multiple-output (MIMO) radar with unknown mutual coupling is considered, and a tensor-based angle estimation method is proposed. In the proposed method, making use of the banded symmetric Toeplitz structure of the mutual coupling matrix, the influence of the unknown mutual coupling is removed in the tensor domain. Then, a special enhancement tensor is formulated to capture both the noncircularity and inherent multidimensional structure of strictly noncircular signals. After that, the higher-order singular value decomposition (HOSVD) technology is applied for estimating the tensor-based signal subspace. Finally, the direction-of-departure (DOD) and direction-of-arrival (DOA) estimation is obtained by utilizing the rotational invariance technique. Due to the use of both noncircularity and multidimensional structure of the detected signal, the algorithm in this paper has better angle estimation performance than other subspace-based algorithms. The experiment results verify that the method proposed has better angle estimation performance.


Sign in / Sign up

Export Citation Format

Share Document