scholarly journals Subspace Identification of Hammerstein Model with Unified Discontinuous Nonlinearity

2016 ◽  
Vol 2016 ◽  
pp. 1-10
Author(s):  
Borhen Aissaoui ◽  
Moêz Soltani ◽  
Abdelkader Chaari

The main aim of this study is to handle the case where the structures of nonlinear systems are unknown. In the many works, the parametric identification of nonlinear systems represented by Hammerstein model, with discontinuous and asymmetric nonlinearity, considers the structures of the nonlinear and linear blocks are known, especially the nonlinear bloc. To solve this problem, a unified form of nonlinearity representing eight cases of nonlinearities can be used. The parameters of both blocks, linear and nonlinear, are estimated using an iterative subspace approach. More importantly, in an attempt to show the extent to which this method is efficient, we apply it to experimental data obtained from the electropneumatic system. As a result, the numerical and experimental examples confirm a good conditioning and computational efficiency.

1997 ◽  
Vol 07 (01) ◽  
pp. 87-96 ◽  
Author(s):  
D. Coca ◽  
S. A. Billings

A new approach for estimating linear and nonlinear continuous-time models directly from noisy observations is introduced using wavelet decompositions. Results using both simulated and experimental data are included to demonstrate the performance of the new algorithm.


2020 ◽  
Vol 65 (6) ◽  
pp. 1219-1229
Author(s):  
В.А. Четырбоцкий ◽  
◽  
А.Н. Четырбоцкий ◽  
Б.В. Левин ◽  
◽  
...  

A numerical simulation of the spatial-temporal dynamics of a multi-parameter system is developed. The components of this system are plant biomass, mobile and stationary forms of mineral nutrition elements, rhizosphere microorganisms and environmental parameters (temperature, humidity, acidity). Parametric identification and verification of the adequacy of the model were carried out based on the experimental data on the growth of spring wheat «Krasnoufimskaya-100» on peat lowland soil. The results are represented by temporal distributions of biomass from agricultural crop under study and the findings on the content of main nutrition elements within the plant (nitrogen, phosphorus, potassium). An agronomic assessment and interpretation of the obtained results are given.


Author(s):  
V. M. Artyushenko ◽  
V. I. Volovach

The questions connected with mathematical modeling of transformation of non-Gaussian random processes, signals and noise in linear and nonlinear systems are considered and analyzed. The mathematical transformation of random processes in linear inertial systems consisting of both series and parallel connected links, as well as positive and negative feedback is analyzed. The mathematical transformation of random processes with polygamous density of probability distribution during their passage through such systems is considered. Nonlinear inertial and non-linear systems are analyzed.


2021 ◽  
Vol 11 (2) ◽  
Author(s):  
María Jiménez-Buedo

AbstractReactivity, or the phenomenon by which subjects tend to modify their behavior in virtue of their being studied upon, is often cited as one of the most important difficulties involved in social scientific experiments, and yet, there is to date a persistent conceptual muddle when dealing with the many dimensions of reactivity. This paper offers a conceptual framework for reactivity that draws on an interventionist approach to causality. The framework allows us to offer an unambiguous definition of reactivity and distinguishes it from placebo effects. Further, it allows us to distinguish between benign and malignant forms of the phenomenon, depending on whether reactivity constitutes a danger to the validity of the causal inferences drawn from experimental data.


2007 ◽  
Vol 21 (13n14) ◽  
pp. 2204-2214 ◽  
Author(s):  
BEATE PAULUS

The method of increments is a wavefunction-based ab initio correlation method for solids, which explicitly calculates the many-body wavefunction of the system. After a Hartree-Fock treatment of the infinite system the correlation energy of the solid is expanded in terms of localised orbitals or of a group of localised orbitals. The method of increments has been applied to a great variety of materials with a band gap, but in this paper the extension to metals is described. The application to solid mercury is presented, where we achieve very good agreement of the calculated ground-state properties with the experimental data.


2014 ◽  
Vol 628 ◽  
pp. 204-211 ◽  
Author(s):  
Luigi Spedicato ◽  
Iro Armeni ◽  
Nicola Ivan Giannoccaro ◽  
Markos Avlonitis ◽  
Sozon Papavlasopoulos

This paper describes a study about the San Giacomo building for testing the dynamic identification applicability of a low-cost monitoring system, consisting of accelerometers and acquisition modules. The Stochastic Subspace Identification (SSI), a well-known technique of Operational Modal Analysis (OMA), is applied to the experimental data to evaluate the possibility of identifying the first frequencies of the building. Moreover, in order to solve the lack of synchronization of the monitoring system, an innovative method based on the phase delay of each signal is presented and used for digitally synchronizing the data.


Sign in / Sign up

Export Citation Format

Share Document