scholarly journals Key Technology of Real-Time Road Navigation Method Based on Intelligent Data Research

2016 ◽  
Vol 2016 ◽  
pp. 1-16 ◽  
Author(s):  
Haijing Tang ◽  
Yu Liang ◽  
Zhongnan Huang ◽  
Taoyi Wang ◽  
Lin He ◽  
...  

The effect of traffic flow prediction plays an important role in routing selection. Traditional traffic flow forecasting methods mainly include linear, nonlinear, neural network, and Time Series Analysis method. However, all of them have some shortcomings. This paper analyzes the existing algorithms on traffic flow prediction and characteristics of city traffic flow and proposes a road traffic flow prediction method based on transfer probability. This method first analyzes the transfer probability of upstream of the target road and then makes the prediction of the traffic flow at the next time by using the traffic flow equation. Newton Interior-Point Method is used to obtain the optimal value of parameters. Finally, it uses the proposed model to predict the traffic flow at the next time. By comparing the existing prediction methods, the proposed model has proven to have good performance. It can fast get the optimal value of parameters faster and has higher prediction accuracy, which can be used to make real-time traffic flow prediction.

2021 ◽  
pp. 2150481
Author(s):  
Linjia Li ◽  
Yang Yang ◽  
Zhenzhou Yuan ◽  
Zhi Chen

Urban traffic control has become a big issue to help traffic management in recent years. With data explosion, Intelligent Transportation System (ITS) is developing rapidly. ITS is an advanced data-based method for traffic control, which requires timely and effective information supply. This research aims at providing real-time and accurate traffic flow data by intelligent prediction method. Applying multiple road traffic flow data of the Caltrans Performance Measurement System (PeMS) and separating the time series, the mechanism of spatial-temporal differences was taken into consideration. Based on the basic Long Short-Term Memory (LSTM) model, an improved LSTM model with Dropout and Bi-structure (Bi-LSTM) for traffic flow prediction was presented. In the prediction process, we applied three models including the improved Bi-LSTM model, Gated Recurrent Unit (GRU) model and Linear Regression in the experiment, and made a comparison from aspects of model structure complexity, operating efficiency and prediction accuracy. To validate the portability of the prediction model, the features of traffic flow from different datasets were further analyzed. The experimental results show that the improved Bi-LSTM model performs best in traffic flow prediction with comprehensive rationality, which reaches an accuracy of about 92% when considering temporal differences. Particularly, the specific factors of traffic situations and locations which is more applicable to be predicted by the improved Bi-LSTM model are summarized considering spatial differences. This research proposes an advanced and accurate model to provide real-time and short-term traffic flow prediction data, which is of great help to intelligent traffic control. Considering the mechanism between model and road traffic properties, the results suggest that it is more applicable in urban commercial area.


Sensors ◽  
2020 ◽  
Vol 20 (21) ◽  
pp. 6046
Author(s):  
Funing Yang ◽  
Guoliang Liu ◽  
Liping Huang ◽  
Cheng Siong Chin

Urban transport traffic surveillance is of great importance for public traffic control and personal travel path planning. Effective and efficient traffic flow prediction is helpful to optimize these real applications. The main challenge of traffic flow prediction is the data sparsity problem, meaning that traffic flow on some roads or of certain periods cannot be monitored. This paper presents a transport traffic prediction method that leverages the spatial and temporal correlation of transportation traffic to tackle this problem. We first propose to model the traffic flow using a fourth-order tensor, which incorporates the location, the time of day, the day of the week, and the week of the month. Based on the constructed traffic flow tensor, we either propose a model to estimate the correlation in each dimension of the tensor. Furthermore, we utilize the gradient descent strategy to design a traffic flow prediction algorithm that is capable of tackling the data sparsity problem from the spatial and temporal perspectives of the traffic pattern. To validate the proposed traffic prediction method, case studies using real-work datasets are constructed, and the results demonstrate that the prediction accuracy of our proposed method outperforms the baselines. The accuracy decreases the least with the percentage of missing data increasing, including the situation of data being missing on neighboring roads in one or continuous multi-days. This certifies that the proposed prediction method can be utilized for sparse data-based transportation traffic surveillance.


2021 ◽  
Author(s):  
W.-Z. Xiong ◽  
X.-M. Shen ◽  
H.-J. Li ◽  
Z. Shen

Abstract Real-time prediction of traffic flow values in a short period of time is an importantelement in building a traffic management system. The uncertainty, complexity andnonlinearity of traffic flow data make it difficult to predict traffic flow in real time,and the accurate traffic flow prediction has been an urgent problem in the industry.Based on the research of scholars, a traffic flow prediction model based on thecorrelation vector machine method is constructed. The prediction accuracy of thecorrelation vector machine is better than that of the logistic regression and supportvector machine methods, and the correlation vector machine method has the functionof generating prediction error range for the actual traffic sequence data. Theprediction results are very satisfactory, and the prediction speed is significantlyfaster than the other two models, which meets the requirement of real-time trafficflow prediction and is suitable for real-time online prediction, and the predictionaccuracy of the used method is relatively high. The three-way comparison analysisshows that the traffic flow prediction by the correlation vector machine methodcan describe the nonlinear characteristics of traffic flow change more accurately,and the model performance and real-time performance are better. The case studyshows that the traffic flow prediction model based on the correlation vector machinecan improve the speed and accuracy of prediction, which is very suitablefor traffic flow prediction estimation with real-time requirements, and provides ascientific method for real-time traffic flow measurement.


Sign in / Sign up

Export Citation Format

Share Document