A spatial-temporal approach for traffic status analysis and prediction based on Bi-LSTM structure

2021 ◽  
pp. 2150481
Author(s):  
Linjia Li ◽  
Yang Yang ◽  
Zhenzhou Yuan ◽  
Zhi Chen

Urban traffic control has become a big issue to help traffic management in recent years. With data explosion, Intelligent Transportation System (ITS) is developing rapidly. ITS is an advanced data-based method for traffic control, which requires timely and effective information supply. This research aims at providing real-time and accurate traffic flow data by intelligent prediction method. Applying multiple road traffic flow data of the Caltrans Performance Measurement System (PeMS) and separating the time series, the mechanism of spatial-temporal differences was taken into consideration. Based on the basic Long Short-Term Memory (LSTM) model, an improved LSTM model with Dropout and Bi-structure (Bi-LSTM) for traffic flow prediction was presented. In the prediction process, we applied three models including the improved Bi-LSTM model, Gated Recurrent Unit (GRU) model and Linear Regression in the experiment, and made a comparison from aspects of model structure complexity, operating efficiency and prediction accuracy. To validate the portability of the prediction model, the features of traffic flow from different datasets were further analyzed. The experimental results show that the improved Bi-LSTM model performs best in traffic flow prediction with comprehensive rationality, which reaches an accuracy of about 92% when considering temporal differences. Particularly, the specific factors of traffic situations and locations which is more applicable to be predicted by the improved Bi-LSTM model are summarized considering spatial differences. This research proposes an advanced and accurate model to provide real-time and short-term traffic flow prediction data, which is of great help to intelligent traffic control. Considering the mechanism between model and road traffic properties, the results suggest that it is more applicable in urban commercial area.

2021 ◽  
Author(s):  
Erdem Doğan

Abstract Intelligent transport systems need accurate short-term traffic flow forecasts. However, developing a robust short-term traffic flow forecasting approach is a challenge due to the stochastic character of traffic flow. This study proposes a novel approach for short-term traffic flow prediction task namely Robust Long Short Term Memory (R-LSTM) based on Robust Empirical Mode Decomposing (REDM) algorithm and Long Short Term Memory (LSTM). Short-term traffic flow data provided from the Caltrans Performance Measurement System (PeMS) database were used in the training and testing of the model. The dataset was composed of traffic data collected by 25 traffic detectors on different freeways’ main lanes. The time resolution of the dataset was set to 15 minutes, and the Hampel preprocessing algorithm was applied for outlier elimination. The R-LSTM predictions were compared with the state-of-art models, utilizing RMSE, MSE, and MAPE as performance criteria. Performance analyzes for various periods show that R-LSTM is remarkably successful in all time periods. Moreover, developed model performance is significantly higher, especially during mid-day periods when traffic flow fluctuations are high. These results show that R-LSTM is a strong candidate for short-term traffic flow prediction, and can easily adapt to fluctuations in traffic flow. In addition, robust models for short-term predictions can be developed by applying the signal separation method to traffic flow data.


2014 ◽  
Vol 988 ◽  
pp. 715-718
Author(s):  
Jia Yang Li ◽  
Qin Xue ◽  
Jin De Liu

Short-term traffic flow forecasting is a core problem in Intelligent Transportation System .Considering linear and nonlinear, this paper proposes a short-term traffic flow intelligent combination approach. The weight of four forecasting model is given by the correlation coefficient and standard deviation method. The experimental results show that the new approach of real-time traffic flow prediction is higher precision than single method.


Congestion is the primary issue related to traffic flow. Avoiding congestion after getting into is not possible. So the only way is to make the informed decision by knowing the traffic situation in advance. This can be achieved with the help of traffic flow prediction. In the proposed work, short term traffic flow prediction is performed using support vector machine in combination with rough set. Traffic data used for analysis is collected from three adjacent intersections of Nagpur city and traffic flow is predicted at downstream junction. The work has attempted to study the effect of aggregation intervals and past samples on the prediction performance using MSE threshold variation. Rough set is used as a post processor to validate the prediction result. Accurate and timely prediction can provide reliability for optimized traffic control and guidance.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yue Hou ◽  
Zhiyuan Deng ◽  
Hanke Cui

Short-term traffic flow prediction is an effective means for intelligent transportation system (ITS) to mitigate traffic congestion. However, traffic flow data with temporal features and periodic characteristics are vulnerable to weather effects, making short-term traffic flow prediction a challenging issue. However, the existing models do not consider the influence of weather changes on traffic flow, leading to poor performance under some extreme conditions. In view of the rich features of traffic data and the characteristic of being vulnerable to external weather conditions, the prediction model based on traffic data has certain limitations, so it is necessary to conduct research studies on traffic flow prediction driven by both the traffic data and weather data. This paper proposes a combined framework of stacked autoencoder (SAE) and radial basis function (RBF) neural network to predict traffic flow, which can effectively capture the temporal correlation and periodicity of traffic flow data and disturbance of weather factors. Firstly, SAE is used to process the traffic flow data in multiple time slices to acquire a preliminary prediction. Then, RBF is used to capture the relation between weather disturbance and periodicity of traffic flow so as to gain another prediction. Finally, another RBF is used for the fusion of the above two predictions on decision level, obtaining a reconstructed prediction with higher accuracy. The effectiveness and robustness of the proposed model are verified by experiments.


2021 ◽  
Vol 2021 ◽  
pp. 1-16
Author(s):  
Yanli Shao ◽  
Yiming Zhao ◽  
Feng Yu ◽  
Huawei Zhu ◽  
Jinglong Fang

With the acceleration of urbanization and the increase in the number of motor vehicles, more and more social problems such as traffic congestion have emerged. Accordingly, efficient and accurate traffic flow prediction has become a research hot spot in the field of intelligent transportation. However, traditional machine learning algorithms cannot further optimize the model with the increase of the data scale, and the deep learning algorithms perform poorly in mobile application or real-time application; how to train and update deep learning models efficiently and accurately is still an urgent problem since they require huge computation resources and time costs. Therefore, an incremental learning-based CNN-LTSM model, IL-TFNet, is proposed for traffic flow prediction in this study. The lightweight convolution neural network-based model architecture is designed to process spatiotemporal and external environment features simultaneously to improve the prediction performance and prediction efficiency of the model. Especially, the K-means clustering algorithm is applied as an uncertainty feature to extract unknown traffic accident information. During the model training, instead of the traditional batch learning algorithm, the incremental learning algorithm is applied to reduce the cost of updating the model and satisfy the requirements of high real-time performance and low computational overhead in short-term traffic prediction. Furthermore, the idea of combining incremental learning with active learning is proposed to fine-tune the prediction model to improve prediction accuracy in special situations. Experiments have proved that compared with other traffic flow prediction models, the IL-TFNet model performs well in short-term traffic flow prediction.


2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Zhaosheng Yang ◽  
Qichun Bing ◽  
Ciyun Lin ◽  
Nan Yang ◽  
Duo Mei

Short-time traffic flow prediction is necessary for advanced traffic management system (ATMS) and advanced traveler information system (ATIS). In order to improve the effect of short-term traffic flow prediction, this paper presents a short-term traffic flow multistep prediction method based on similarity search of time series. Firstly, the landmark model is used to represent time series of traffic flow data. Then the input data of prediction model are determined through searching similar time series. Finally, the echo state networks model is used for traffic flow multistep prediction. The performance of the proposed method is measured with expressway traffic flow data collected from loop detectors in Shanghai, China. The experimental results demonstrate that the proposed method can achieve better multistep prediction performance than conventional methods.


Sign in / Sign up

Export Citation Format

Share Document