scholarly journals Measurement of Mobile Switching Centres Throughput in GSM Network Integrating Sliding Window Algorithm with a Single Server Finite Queuing Model

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Dinaker Babu Bollini ◽  
Mannava Muniratnam Naidu ◽  
Mallikharjuna Rao Nuka

The sliding window algorithm proposed for determining an optimal sliding window does not consider the waiting times of call setup requests of a mobile station in queue at a Mobile Switching Centre (MSC) in the Global System for Mobile (GSM) Communication Network. This study proposes a model integrating the sliding window algorithm with a single server finite queuing model, referred to as integrated model for measurement of realistic throughput of a MSC considering the waiting times of call setup requests. It assumes that a MSC can process one call setup request at a time. It is useful in determining an optimal sliding window size that maximizes the realistic throughput of a MSC. Though the model assumes that a MSC can process one call setup request at a time, its scope can be extended for measuring the realistic throughput of a MSC that can process multiple call setup requests at a time.

1979 ◽  
Vol 11 (3) ◽  
pp. 616-643 ◽  
Author(s):  
O. J. Boxma

This paper considers a queueing system consisting of two single-server queues in series, in which the service times of an arbitrary customer at both queues are identical. Customers arrive at the first queue according to a Poisson process.Of this model, which is of importance in modern network design, a rather complete analysis will be given. The results include necessary and sufficient conditions for stationarity of the tandem system, expressions for the joint stationary distributions of the actual waiting times at both queues and of the virtual waiting times at both queues, and explicit expressions (i.e., not in transform form) for the stationary distributions of the sojourn times and of the actual and virtual waiting times at the second queue.In Part II (pp. 644–659) these results will be used to obtain asymptotic and numerical results, which will provide more insight into the general phenomenon of tandem queueing with correlated service times at the consecutive queues.


Queuing Theory provides the system of applications in many sectors in life cycle. Queuing Structure and basic components determination is computed in queuing model simulation process. Distributions in Queuing Model can be extracted in quantitative analysis approach. Differences in Queuing Model Queue discipline, Single and Multiple service station with finite and infinite population is described in Quantitative analysis process. Basic expansions of probability density function, Expected waiting time in queue, Expected length of Queue, Expected size of system, probability of server being busy, and probability of system being empty conditions can be evaluated in this quantitative analysis approach. Probability of waiting ‘t’ minutes or more in queue and Expected number of customer served per busy period, Expected waiting time in System are also computed during the Analysis method. Single channel model with infinite population is used as most common case of queuing problems which involves the single channel or single server waiting line. Single Server model with finite population in test statistics provides the Relationships used in various applications like Expected time a customer spends in the system, Expected waiting time of a customer in the queue, Probability that there are n customers in the system objective case, Expected number of customers in the system


2018 ◽  
Vol 127-128 ◽  
pp. 1-20 ◽  
Author(s):  
Chesoong Kim ◽  
Sergei Dudin ◽  
Alexander Dudin ◽  
Konstantin Samouylov

2019 ◽  
Vol 53 (5) ◽  
pp. 1861-1876 ◽  
Author(s):  
Sapana Sharma ◽  
Rakesh Kumar ◽  
Sherif Ibrahim Ammar

In many practical queuing situations reneging and balking can only occur if the number of customers in the system is greater than a certain threshold value. Therefore, in this paper we study a single server Markovian queuing model having customers’ impatience (balking and reneging) with threshold, and retention of reneging customers. The transient analysis of the model is performed by using probability generating function technique. The expressions for the mean and variance of the number of customers in the system are obtained and a numerical example is also provided. Further the steady-state solution of the model is obtained. Finally, some important queuing models are derived as the special cases of this model.


2009 ◽  
pp. 2037-2050
Author(s):  
Francesco Buccafurri ◽  
Gianluca Caminiti ◽  
Gianluca Lax

In the context of Knowledge Discovery in Databases, data reduction is a pre-processing step delivering succinct yet meaningful data to sequent stages. If the target of mining are data streams, then it is crucial to suitably reduce them, since often analyses on such data require multiple scans. In this chapter, we propose a histogram-based approach to reducing sliding windows supporting approximate arbitrary (i.e., non biased) range-sum queries. The histogram is based on a hierarchical structure (as opposed to the flat structure of traditional ones) and it results suitable to directly support hierarchical queries, such as drill-down and roll-up operations. In particular, both sliding window shifting and quick query answering operations are logarithmic in the sliding window size. Experimental analysis shows the superiority of our method in terms of accuracy w.r.t. the state-of-the-art approaches in the context of histogram-based sliding window reduction techniques.


1991 ◽  
Vol 28 (02) ◽  
pp. 433-445 ◽  
Author(s):  
Masakiyo Miyazawa ◽  
Genji Yamazaki

The attained waiting time of customers in service of the G/G/1 queue is compared for various work-conserving service disciplines. It is proved that the attained waiting time distribution is minimized (maximized) in convex order when the discipline is FCFS (PR-LCFS). We apply the result to characterize finiteness of moments of the attained waiting time in the GI/GI/1 queue with an arbitrary work-conserving service discipline. In this discussion, some interesting relationships are obtained for a PR-LCFS queue.


Pomorstvo ◽  
2019 ◽  
Vol 33 (2) ◽  
pp. 205-209
Author(s):  
Svjetlana Hess ◽  
Ana Grbčić

The paper gives an overview of the real system as a multiphase single server queuing problem, which is a rare case in papers dealing with the application of the queueing theory. The methodological and scientific contribution of this paper is primarily in setting up the model of the real problem applying the multiphase queueing theory. The research of service system at Rijeka Airport may allow the airport to be more competitive by increasing service quality. The existing performance measures have been evaluated in order to improve Rijeka Airport queueing system, as a record number of passengers is to be expected in the next few years. Performance indicators have pointed out how the system handles congestion. The research is also focused on defining potential bottlenecks and comparing the results with IATA guidelines in terms of maximum waiting times.


1993 ◽  
Vol 7 (2) ◽  
pp. 187-208 ◽  
Author(s):  
O. J. Boxma ◽  
J. A. Weststrate ◽  
U. Yechiali

A repair crew is responsible for the maintenance and operation of N installations. The crew has to perform a collection of preventive maintenance tasks at the various installations. The installations may break down from time to time, generating corrective maintenance requests which have priority over the preventive maintenance tasks. We formulate and analyze this real-world problem as a single-server multi-queue polling model with Globally Gated service discipline and with server interruptions. We derive closed-form expressions for the Laplace-Stieltjes Transform and the first moment of the waiting time distributions of the preventive and corrective maintenance requests at the various installations, and obtain simple and easily implementable static and dynamic rules for optimal operation of the system. We further show that, for the socalled elevator-type polling scheme, mean waiting times of preventive maintenance jobs at all installations are equal.


Sign in / Sign up

Export Citation Format

Share Document