scholarly journals Miglustat Reverts the Impairment of Synaptic Plasticity in a Mouse Model of NPC Disease

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
G. D’Arcangelo ◽  
D. Grossi ◽  
M. Racaniello ◽  
A. Cardinale ◽  
A. Zaratti ◽  
...  

Niemann-Pick type C disease is an autosomal recessive storage disorder, characterized by abnormal sequestration of unesterified cholesterol within the late endolysosomal compartment of cells and accumulation of gangliosides and other sphingolipids. Progressive neurological deterioration and insurgence of symptoms like ataxia, seizure, and cognitive decline until severe dementia are pathognomonic features of the disease. Here, we studied synaptic plasticity phenomena and evaluated ERKs activation in the hippocampus of BALB/c NPC1−/− mice, a well described animal model of the disease. Our results demonstrated an impairment of both induction and maintenance of long term synaptic potentiation in NPC1−/− mouse slices, associated with the lack of ERKs phosphorylation. We then investigated the effects of Miglustat, a recent approved drug for the treatment of NPCD. We found thatin vivoMiglustat administration in NPC1−/− mice was able to rescue synaptic plasticity deficits, to restore ERKs activation and to counteract hyperexcitability. Overall, these data indicate that Miglustat may be effective for treating the neurological deficits associated with NPCD, such as seizures and dementia.

2020 ◽  
Vol 17 (4) ◽  
pp. 354-360 ◽  
Author(s):  
Yu-Xing Ge ◽  
Ying-Ying Lin ◽  
Qian-Qian Bi ◽  
Yu-Juan Chen

Background: Patients with temporal lobe epilepsy (TLE) usually suffer from cognitive deficits and recurrent seizures. Brivaracetam (BRV) is a novel anti-epileptic drug (AEDs) recently used for the treatment of partial seizures with or without secondary generalization. Different from other AEDs, BRV has some favorable properties on synaptic plasticity. However, the underlying mechanisms remain elusive. Objective: The aim of this study was to explore the neuroprotective mechanism of BRV on synaptic plasticity in experimental TLE rats. Methods: The effect of chronic treatment with BRV (10 mg/kg) was assessed on Pilocarpine induced TLE model through measurement of the field excitatory postsynaptic potentials (fEPSPs) in vivo. Differentially expressed synaptic vesicle protein 2A (SV2A) were identified with immunoblot. Then, fast phosphorylation of synaptosomal-associated protein 25 (SNAP-25) during long-term potentiation (LTP) induction was performed to investigate the potential roles of BRV on synaptic plasticity in the TLE model. Results: An increased level of SV2A accompanied by a depressed LTP in the hippocampus was shown in epileptic rats. Furthermore, BRV treatment continued for more than 30 days improved the over-expression of SV2A and reversed the synaptic dysfunction in epileptic rats. Additionally, BRV treatment alleviates the abnormal SNAP-25 phosphorylation at Ser187 during LTP induction in epileptic ones, which is relevant to the modulation of synaptic vesicles exocytosis and voltagegated calcium channels. Conclusion: BRV treatment ameliorated the over-expression of SV2A in the hippocampus and rescued the synaptic dysfunction in epileptic rats. These results identify the neuroprotective effect of BRV on TLE model.


2015 ◽  
Vol 210 (5) ◽  
pp. 771-783 ◽  
Author(s):  
Norbert Bencsik ◽  
Zsófia Szíber ◽  
Hanna Liliom ◽  
Krisztián Tárnok ◽  
Sándor Borbély ◽  
...  

Actin turnover in dendritic spines influences spine development, morphology, and plasticity, with functional consequences on learning and memory formation. In nonneuronal cells, protein kinase D (PKD) has an important role in stabilizing F-actin via multiple molecular pathways. Using in vitro models of neuronal plasticity, such as glycine-induced chemical long-term potentiation (LTP), known to evoke synaptic plasticity, or long-term depolarization block by KCl, leading to homeostatic morphological changes, we show that actin stabilization needed for the enlargement of dendritic spines is dependent on PKD activity. Consequently, impaired PKD functions attenuate activity-dependent changes in hippocampal dendritic spines, including LTP formation, cause morphological alterations in vivo, and have deleterious consequences on spatial memory formation. We thus provide compelling evidence that PKD controls synaptic plasticity and learning by regulating actin stability in dendritic spines.


2012 ◽  
Vol 36 (1) ◽  
pp. 129-137 ◽  
Author(s):  
Y. H. Chien ◽  
S. F. Peng ◽  
C. C. Yang ◽  
N. C. Lee ◽  
L. K. Tsai ◽  
...  

2021 ◽  
Author(s):  
◽  
Natalie Hammond

<p>Niemann-Pick type C (NPC) disease is a rare neuro-visceral, lysosomal storage disorder for which no effective therapy yet exists. A recessive mutation in the late endosomal/lysosomal cholesterol transport genes NPC1 (95%) or NPC2 (5%) are the causative factors which leads to an accumulation of unesterified cholesterol and sphingolipids in the late endosome/lysosome. It is a build-up of these lipids that, in the majority of cases, ultimately leads to premature death prior to adolescence. In recent years, an imbalance of histone acetylation in a yeast model of NPC disease and subsequently an increased expression of histone deacetylase genes in NPC patient fibroblasts relative to healthy controls was discovered. This led to the finding that Vorinostat (suberoylanilide hydroxamic acid (SAHA); Zolinza®) a histone deacetylase inhibitor (HDACi) drug, rescued unesterified cholesterol accumulation in NPC patient fibroblasts. From these findings in NPC patient fibroblasts, a Phase I clinical trial testing the efficacy of orally-administered Vorinostat in adult NPC disease patients commenced in 2014; however, the therapeutic efficacy of Vorinostat in a whole animal model of NPC disease has not been investigated and is thus unknown. In this thesis, the therapeutic efficacy of intra-peritoneal administered 150 mg/kg Vorinostat in the Npc1nmf164 mouse was explored. This internationally approved HDACi reduced liver disease by decreasing lipid accumulation without increasing expression of NPC1; however, the treatment did not delay weight loss, onset of ataxia and premature death, possibly due to insufficient concentrations penetrating through the blood brain barrier. Transcriptome analysis suggested Vorinostat improved liver disease in a pleiotropic manner, not surprising given the epigenetic nature of HDACi at the gene expression level. Overall, the results herein are of particular importance to the current clinical trial where the therapeutic efficacy is being investigated without any knowledge of efficacy in an animal of NPC disease.</p>


2021 ◽  
Vol 22 (16) ◽  
pp. 8858
Author(s):  
Antonietta Bernardo ◽  
Chiara De Nuccio ◽  
Sergio Visentin ◽  
Alberto Martire ◽  
Luisa Minghetti ◽  
...  

Niemann–Pick type C (NPC) disease is a wide-spectrum clinical condition classified as a neurovisceral disorder affecting mainly the liver and the brain. It is caused by mutations in one of two genes, NPC1 and NPC2, coding for proteins located in the lysosomes. NPC proteins are deputed to transport cholesterol within lysosomes or between late endosome/lysosome systems and other cellular compartments, such as the endoplasmic reticulum and plasma membrane. The first trait of NPC is the accumulation of unesterified cholesterol and other lipids, like sphingosine and glycosphingolipids, in the late endosomal and lysosomal compartments, which causes the blockade of autophagic flux and the impairment of mitochondrial functions. In the brain, the main consequences of NPC are cerebellar neurodegeneration, neuroinflammation, and myelin defects. This review will focus on myelin defects and the pivotal importance of cholesterol for myelination and will offer an overview of the molecular targets and the pharmacological strategies so far proposed, or an object of clinical trials for NPC. Finally, it will summarize recent data on a new and promising pharmacological perspective involving A2A adenosine receptor stimulation in genetic and pharmacological NPC dysmyelination models.


Nanomaterials ◽  
2019 ◽  
Vol 9 (5) ◽  
pp. 802 ◽  
Author(s):  
Yuki Maeda ◽  
Keiichi Motoyama ◽  
Rena Nishiyama ◽  
Taishi Higashi ◽  
Risako Onodera ◽  
...  

Niemann-Pick type C disease (NPC) is a fatal, autosomal recessive disorder, which causes excessive accumulation of free cholesterol in endolysosomes, resulting in progressive hepatomegaly and neurodegeneration. Currently, 2-hydroxypropyl-β-cyclodextrin (HP-β-CyD) is used at a high dose for the treatment of NPC, risking lung toxicity and hearing loss during treatment. One method to reduce the required dose of HP-β-CyD for the treatment of hepatomegaly is to actively deliver β-cyclodextrin (β-CyD) to hepatocytes. Previously, we synthesized lactosyl-β-CyD (Lac-β-CyD) and demonstrated that it lowers cholesterol in NPC model liver cells. In the present study, we studied the efficacy and safety of Lac-β-CyD treatment of hepatomegaly in Npc1−/− mice. After subcutaneous administration, Lac-β-CyD accumulated in the liver and reduced hepatomegaly with greater efficacy than HP-β-CyD. In addition, subcutaneous administration of a very high dose of Lac-β-CyD was less toxic to the lungs than HP-β-CyD. Notably, the accumulation of intracellular free cholesterol in endolysosomes of NPC-like liver cells was significantly lower after administration of Lac-β-CyD than after treatment with HP-β-CyD. In conclusion, these results suggest that Lac-β-CyD is a candidate for the effective treatment of hepatomegaly in NPC.


2009 ◽  
Vol 96 (2) ◽  
pp. S33-S34
Author(s):  
Marc Patterson ◽  
Darlenn Vecchio ◽  
Elizabeth Jacklin ◽  
Ed Wraith

Nature ◽  
2002 ◽  
Vol 420 (6917) ◽  
pp. 788-794 ◽  
Author(s):  
Joshua T. Trachtenberg ◽  
Brian E. Chen ◽  
Graham W. Knott ◽  
Guoping Feng ◽  
Joshua R. Sanes ◽  
...  

2018 ◽  
Vol 13 (1) ◽  
Author(s):  
Yann Nadjar ◽  
Ana Lucia Hütter-Moncada ◽  
Philippe Latour ◽  
Xavier Ayrignac ◽  
Elsa Kaphan ◽  
...  

2019 ◽  
Vol 130 (1) ◽  
pp. e13-e14
Author(s):  
S. Tozza ◽  
R. Dubbioso ◽  
R. Iodice ◽  
A. Topa ◽  
M. Esposito ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document