scholarly journals Influence of Halide Solutions on Collagen Networks: Measurements of Physical Properties by Atomic Force Microscopy

2016 ◽  
Vol 2016 ◽  
pp. 1-7
Author(s):  
Birgit Spitzer-Sonnleitner ◽  
André Kempe ◽  
Maximilian Lackner

The influence of aqueous halide solutions on collagen coatings was tested. The effects on resistance against indentation/penetration on adhesion forces were measured by atomic force microscopy (AFM) and the change of Young’s modulus of the coating was derived. Comparative measurements over time were conducted with halide solutions of various concentrations. Physical properties of the mesh-like coating generally showed large variability. Starting with a compact set of physical properties, data disperse after minutes. A trend of increase in elasticity and permeability was found for all halide solutions. These changes were largest in NaI, displaying a logical trend with ion size. However a correlation with concentration was not measured. Adhesion properties were found to be independent of mechanical properties. The paper also presents practical experience for AFM measurements of soft tissue under liquids, particularly related to data evaluation. The weakening in physical strength found after exposure to halide solutions may be interpreted as widening of the network structure or change in the chemical properties in part of the collagen fibres (swelling). In order to design customized surface coatings at optimized conditions also for medical applications, halide solutions might be used as agents with little impact on the safety of patients.

2020 ◽  
Author(s):  
Mitsunori Kitta

This manuscript propose the operando detection technique of the physical properties change of electrolyte during Li-metal battery operation.The physical properties of electrolyte solution such as viscosity (η) and mass densities (ρ) highly affect the feature of electrochemical Li-metal deposition on the Li-metal electrode surface. Therefore, the operando technique for detection these properties change near the electrode surface is highly needed to investigate the true reaction of Li-metal electrode. Here, this study proved that one of the atomic force microscopy based analysis, energy dissipation analysis of cantilever during force curve motion, was really promising for the direct investigation of that. The solution drag of electrolyte, which is controlled by the physical properties, is directly concern the energy dissipation of cantilever motion. In the experiment, increasing the energy dissipation was really observed during the Li-metal dissolution (discharge) reaction, understanding as the increment of η and ρ of electrolyte via increasing of Li-ion concentration. Further, the dissipation energy change was well synchronized to the charge-discharge reaction of Li-metal electrode.This study is the first report for direct observation of the physical properties change of electrolyte on Li-metal electrode reaction, and proposed technique should be widely interesting to the basic interfacial electrochemistry, fundamental researches of solid-liquid interface, as well as the battery researches.


2016 ◽  
Vol 1 (1) ◽  
pp. 69-74 ◽  
Author(s):  
Sofiane El-Kirat-Chatel ◽  
Yves F. Dufrêne

We establish atomic force microscopy as a new nanoscopy platform for quantifying the forces between fungal pathogens and immune cells.


2019 ◽  
Vol 13 (7) ◽  
pp. 1878-1882 ◽  
Author(s):  
Maximilian Mittelviefhaus ◽  
Daniel B. Müller ◽  
Tomaso Zambelli ◽  
Julia A. Vorholt

2016 ◽  
Vol 3 (10) ◽  
pp. 160248 ◽  
Author(s):  
X. Jin ◽  
B. Kasal

This study attempts to address the interpretation of atomic force microscopy (AFM) adhesion force measurements conducted on the heterogeneous rough surface of wood and natural fibre materials. The influences of wood surface roughness, tip geometry and wear on the adhesion force distribution are examined by cyclic measurements conducted on wood surface under dry inert conditions. It was found that both the variation of tip and surface roughness of wood can widen the distribution of adhesion forces, which are essential for data interpretation. When a common Si AFM tip with nanometre size is used, the influence of tip wear can be significant. Therefore, control experiments should take the sequence of measurements into consideration, e.g. repeated experiments with used tip. In comparison, colloidal tips provide highly reproducible results. Similar average values but different distributions are shown for the adhesion measured on two major components of wood surface (cell wall and lumen). Evidence supports the hypothesis that the difference of the adhesion force distribution on these two locations was mainly induced by their surface roughness.


2020 ◽  
Vol 992 ◽  
pp. 580-584
Author(s):  
V.Yu. Chukhlanov ◽  
O.G. Selivanov ◽  
N.V. Chukhlanova

New materials based on oligooxidridsilmethylensiloxysilane nanostructured with ethyl ester of orthosilicic acid – tetraethoxysilane have been studied in the research. Tetraethoxysilane introduction into the composition is supposed to cause its decomposition up to nanoparticles of silicon oxide. The alkoxysilane hydrolytic destruction kinetics and the impact of the composition and nature of the polymer composition components on the physical properties have been studied. Atomic force microscopy was used to study the structurization kinetics of the polymer composition. The composition hydrophobicity was determined by the edge wetting angle. To study the adhesion characteristics of the obtained material, the method of disc separation from the substrate has been used. The relative rigidity has been determined by a pendulum device M3. Atomic force microscopy revealed the presence of nanoscale neoplasms (at average of one hundred twenty per one square micrometer) in diameter from two to five nanometers in the surface structure of the composition, modified with tetraethoxysilane. Herewith the physical properties of the material change: rigidity increases, the edge angle of wetting increases as well. The studied nanostructured compositions can also be applied. For example – they can be used as a protective coating with a set of special properties, such as high hydrophobicity.


Author(s):  
Christophe Tromas ◽  
Javier Rojo ◽  
Jesús M. de la Fuente ◽  
Africa G. Barrientos ◽  
Ricardo García ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document