scholarly journals A Novel Fault Diagnosis Model for Bearing of Railway Vehicles Using Vibration Signals Based on Symmetric Alpha-Stable Distribution Feature Extraction

2016 ◽  
Vol 2016 ◽  
pp. 1-13 ◽  
Author(s):  
Yongjian Li ◽  
Weihua Zhang ◽  
Qing Xiong ◽  
Tianwei Lu ◽  
Guiming Mei

Axle box bearings are the most critical mechanical components of railway vehicles. Condition monitoring is of great benefit to ensure the healthy status of bearings in the railway train. In this paper, a novel fault diagnosis model for axle box bearing based on symmetric alpha-stable distribution feature extraction and least squares support vector machines (LS-SVM) using vibration signals is proposed which is conducted in three main steps. Firstly, fast nonlocal means is used for denoising and ensemble empirical mode decomposition is applied to extract fault feature information. Then a new statistical method of feature extraction, symmetric alpha-stable distribution, is employed to obtain representative features from intrinsic mode functions. Additionally, the hybrid fault feature sets are input into LS-SVM to identify the fault type. To enhance the performance of LS-SVM in the case of small-scale samples, Morlet wavelet kernel function is combined with LS-SVM for the classification of fault type and fault severity and the particle swarm optimization is used for the optimization of LS-WSVM parameters. Finally, the experimental results demonstrate that the proposed approach performs more effectively and robustly than the other methods in small-scale samples for fault detection and classification of railway vehicle bearings.

Processes ◽  
2021 ◽  
Vol 9 (6) ◽  
pp. 919
Author(s):  
Wanlu Jiang ◽  
Chenyang Wang ◽  
Jiayun Zou ◽  
Shuqing Zhang

The field of mechanical fault diagnosis has entered the era of “big data”. However, existing diagnostic algorithms, relying on artificial feature extraction and expert knowledge are of poor extraction ability and lack self-adaptability in the mass data. In the fault diagnosis of rotating machinery, due to the accidental occurrence of equipment faults, the proportion of fault samples is small, the samples are imbalanced, and available data are scarce, which leads to the low accuracy rate of the intelligent diagnosis model trained to identify the equipment state. To solve the above problems, an end-to-end diagnosis model is first proposed, which is an intelligent fault diagnosis method based on one-dimensional convolutional neural network (1D-CNN). That is to say, the original vibration signal is directly input into the model for identification. After that, through combining the convolutional neural network with the generative adversarial networks, a data expansion method based on the one-dimensional deep convolutional generative adversarial networks (1D-DCGAN) is constructed to generate small sample size fault samples and construct the balanced data set. Meanwhile, in order to solve the problem that the network is difficult to optimize, gradient penalty and Wasserstein distance are introduced. Through the test of bearing database and hydraulic pump, it shows that the one-dimensional convolution operation has strong feature extraction ability for vibration signals. The proposed method is very accurate for fault diagnosis of the two kinds of equipment, and high-quality expansion of the original data can be achieved.


Author(s):  
Qing Zhang ◽  
Heng Li ◽  
Xiaolong Zhang ◽  
Haifeng Wang

To achieve a more desirable fault diagnosis accuracy by applying multi-domain features of vibration signals, it is significative and challenging to refine the most representative and intrinsic feature components from the original high dimensional feature space. A novel dimensionality reduction method for fault diagnosis is proposed based on local Fisher discriminant analysis (LFDA) which takes both label information and local geometric structure of the high dimensional features into consideration. Multi-kernel trick is introduced into the LFDA to improve its performance in dealing with the nonlinearity of mapping high dimensional feature space into a lower one. To obtain an optimal diagnosis accuracy by the reduced features of low dimensionality, binary particle swarm optimization (BPSO) algorithm is utilized to search for the most appropriate parameters of kernels and K-nearest neighbor (kNN) recognition model. Samples with labels are used to train the optimal multi-kernel LFDA and kNN (OMKLFDA-kNN) fault diagnosis model to obtain the optimal transformation matrix. Consequently, the trained fault diagnosis model implements the recognition of machinery health condition with the most representative feature space of vibration signals. A bearing fault diagnosis experiment is conducted to verify the effectiveness of proposed diagnostic approach. Performance comparison with some other methods are investigated, and the improvement for fault diagnosis of the proposed method are confirmed in different aspects.


2018 ◽  
Vol 2018 ◽  
pp. 1-12 ◽  
Author(s):  
Fan Jiang ◽  
Zhencai Zhu ◽  
Wei Li ◽  
Bo Wu ◽  
Zhe Tong ◽  
...  

Feature extraction is one of the most difficult aspects of mechanical fault diagnosis, and it is directly related to the accuracy of bearing fault diagnosis. In this study, improved permutation entropy (IPE) is defined as the feature for bearing fault diagnosis. In this method, ensemble empirical mode decomposition (EEMD), a self-adaptive time-frequency analysis method, is used to process the vibration signals, and a set of intrinsic mode functions (IMFs) can thus be obtained. A feature extraction strategy based on statistical analysis is then presented for IPE, where the so-called optimal number of permutation entropy (PE) values used for an IPE is adaptively selected. The obtained IPE-based samples are then input to a support vector machine (SVM) model. Subsequently, a trained SVM can be constructed as the classifier for bearing fault diagnosis. Finally, experimental vibration signals are applied to validate the effectiveness of the proposed method, and the results show that the proposed method can effectively and accurately diagnose bearing faults, such as inner race faults, outer race faults, and ball faults.


2021 ◽  
Author(s):  
Hao DeChen ◽  
HuaLing Li ◽  
JinYing Huang

Abstract Rotating machinery (RM) is one of the most common mechanical equipment in engineering applications and has a broad and vital role. Rotating machinery includes gearboxes, bearing motors, generators, etc. In industrial production, the important position of rotating machinery and its variable speed and complex working conditions lead to unstable vibration characteristics, which have become a research hotspot in mechanical fault diagnosis. Aiming at the multi-classification problem of rotating machinery with variable speed and complex working conditions, this paper proposes a fault diagnosis method based on the construction of improved sensitive mode matrix (ISMM), isometric mapping (ISOMAP) and Convolution-Vision Transformer network (CvT) structure. After overlapping and sampling the variable speed signals, a high-dimensional ISMM is constructed, and the ISMM is mapped into the manifold space through ISOMAP manifold learning. This method can extract the fault transient characteristics of the variable speed signal, and the experiment proves that it can solve the problem that the conventional method cannot effectively extract the characteristics of the variable speed data. CvT combines the advantages of self-attention mechanism and convolution in CNN, so the CvT network structure is used for feature extraction and fault recognition and classification. The CvT network structure takes into account both global feature extraction and local feature extraction, which greatly reduces the number of training iterations and the size of the network model. Two data sets (the HFXZ-I planetary gearbox variable speed data set in the laboratory and the bearing variable speed public data set of the University of Ottawa in Canada) are used to experimentally verify the proposed fault diagnosis model. Experimental results show that the proposed fault diagnosis model has good recognition accuracy and robustness.


2020 ◽  
Vol 2020 ◽  
pp. 1-12
Author(s):  
Jingli Yang ◽  
Tianyu Gao ◽  
Shouda Jiang ◽  
Shijie Li ◽  
Qing Tang

In actual engineering applications, inevitable noise seriously affects the accuracy of fault diagnosis for rotating machinery. To effectively identify the fault classes of rotating machinery under noise interference, an efficient fault diagnosis method without additional denoising procedures is proposed. First, a one-dimensional deep residual shrinkage network, which directly takes the raw vibration signals contaminated by noise as input, is developed to realize end-to-end fault diagnosis. Then, to further enhance the noise immunity of the diagnosis model, the first layer of the model is set to a wide convolution layer to extract short time features. Moreover, an adaptive batch normalization algorithm (AdaBN) is introduced into the diagnosis model to enhance the adaptability to noise. Experimental results illustrate that the fault diagnosis model for rotating machinery based on one-dimensional deep residual shrinkage network with a wide convolution layer (1D-WDRSN) can accurately identify the fault classes even under noise interference.


2013 ◽  
Vol 391 ◽  
pp. 150-154 ◽  
Author(s):  
Zhao Rong Sun ◽  
Yi Gang Sun ◽  
Chun Lin Sun Sun

The purpose of the research is to establish a fault diagnosis model of the aero-engines key sensors using the artificial neural networks to replace the engines mathematical model, so as to establish a hard fault diagnosis simulation platform to monitor the performances of the engine sensors on real-time, to judge the engine failure mode timely, and to locate the fault type of sensors accurately. By analyzing the correlations of the parameters that affect the conditions of the engine, a three-layer BP network model is established. The related QAR (Quick Access Recorder) data are used to simulate and analyze the models using the MATLAB. Combined with the characteristics of the hard failure of the critical engine sensors and the correlation of the parameters, the fault diagnosis simulation platform is established. Then, the parameters of the normal engine and the failure engine are used respectively to evaluate and validate the platform. The simulation results show that the platform can judge the critical sensors faults of the engine accurately, and can locate the type of sensors reliably.


Sign in / Sign up

Export Citation Format

Share Document