extraction ability
Recently Published Documents


TOTAL DOCUMENTS

121
(FIVE YEARS 41)

H-INDEX

19
(FIVE YEARS 3)

2022 ◽  
Vol 12 (2) ◽  
pp. 818
Author(s):  
Mengjie Zeng ◽  
Shunming Li ◽  
Ranran Li ◽  
Jiantao Lu ◽  
Kun Xu ◽  
...  

Although some traditional autoencoders and their extensions have been widely used in the research of intelligent fault diagnosis of rotating parts, their feature extraction capabilities are limited without label information. In response to this problem, this research proposes a hierarchical sparse discriminant autoencoder (HSDAE) method for fault diagnosis of rotating components, which is a new semi-supervised autoencoder structure. By considering the sparsity of autoencoders, a hierarchical sparsity strategy was proposed to improve the stacked sparsity autoencoders, and the particle swarm optimization algorithm was used to obtain the optimal sparsity parameters to improve network performance. In order to enhance the classification of the autoencoder, a class aggregation and class separability strategy was used, which is an additional discriminative distance that was added as a penalty term in the loss function to enhance the feature extraction ability of the network. Finally, the reliability of the proposed method was verified on the bearing data set of Case Western Reserve University and the bearing data set of the laboratory test platform. The results of comparison with other methods show that the HSDAE method can enhance the feature extraction ability of the network and has reliability and stability for different data sets.


2022 ◽  
Vol 14 (1) ◽  
pp. 177
Author(s):  
Chunhui Zhao ◽  
Jinpeng Wang ◽  
Nan Su ◽  
Yiming Yan ◽  
Xiangwei Xing

Infrared (IR) target detection is an important technology in the field of remote sensing image application. The methods for IR image target detection are affected by many characteristics, such as poor texture information and low contrast. These characteristics bring great challenges to infrared target detection. To address the above problem, we propose a novel target detection method for IR images target detection in this paper. Our method is improved from two aspects: Firstly, we propose a novel residual thermal infrared network (ResTNet) as the backbone in our method, which is designed to improve the feature extraction ability for low contrast targets by Transformer structure. Secondly, we propose a contrast enhancement loss function (CTEL) that optimizes the weights about the loss value of the low contrast targets’ prediction results to improve the effect of learning low contrast targets and compensate for the gradient of the low-contrast targets in training back propagation. Experiments on FLIR-ADAS dataset and our remote sensing dataset show that our method is far superior to the state-of-the-art ones in detecting low-contrast targets of IR images. The mAP of the proposed method reaches 84% on the FLIR public dataset. This is the best precision in published papers. Compared with the baseline, the performance on low-contrast targets is improved by about 20%. In addition, the proposed method is state-of-the-art on the FLIR dataset and our dataset. The comparative experiments demonstrate that our method has strong robustness and competitiveness.


2021 ◽  
Author(s):  
Tiejun Yang ◽  
Xinhao Bai ◽  
Xiaojuan Cui ◽  
Yuehong Gong ◽  
Lei Li

Processes ◽  
2021 ◽  
Vol 9 (12) ◽  
pp. 2222
Author(s):  
Vera V. Belova ◽  
Yulia V. Tsareva ◽  
Yulia A. Zakhodyaeva ◽  
Vladimir K. Ivanov ◽  
Andrey A. Voshkin

A new extraction system containing a mixture of Cyanex 272 and caprylic acid is proposed for the extraction and separation of lanthanides(III). It was shown that this system possesses a high level of extraction ability and capacity. The extraction of lanthanides(III) from chloride-acetate and nitrate-acetate media was investigated on an example of La(III). The composition of the extracted species was confirmed, based on the analysis of lanthanum(III) extraction isotherms. In the case of acetic-acetate aqueous solutions, a decrease in lanthanum(III) extraction efficiency was observed, due to the decreasing equilibrium pH of the aqueous phase in accordance with the cation-exchange mechanism. The composition of the synergistic mixture of Cyanex 272-caprylic acid established demonstrates highly efficient separation of rare-earth metal ions.


2021 ◽  
pp. 1-13
Author(s):  
Junying Chen ◽  
Shipeng Liu ◽  
Liang Zhao ◽  
Dengfeng Chen ◽  
Weihua Zhang

Since small objects occupy less pixels in the image and are difficult to recognize. Small object detection has always been a research difficulty in the field of computer vision. Aiming at the problems of low sensitivity and poor detection performance of YOLOv3 for small objects. AFYOLO, which is more sensitive to small objects detection was proposed in this paper. Firstly, the DenseNet module is introduced into the low-level layers of backbone to enhance the transmission ability of objects information. At the same time, a new mechanism combining channel attention and spatial attention is introduced to improve the feature extraction ability of the backbone. Secondly, a new feature pyramid network (FPN) is proposed to better obtain the features of small objects. Finally, ablation studies on ImageNet classification task and MS-COCO object detection task verify the effectiveness of the proposed attention module and FPN. The results on Wider Face datasets show that the AP of the proposed method is 11.89%higher than that of YOLOv3 and 8.59%higher than that of YOLOv4. All of results show that AFYOLO has better ability for small object detection.


2021 ◽  
Author(s):  
Chuanbo Qin ◽  
Yujie Wu ◽  
Wenbin Liao ◽  
Junying Zeng ◽  
Shufen Liang ◽  
...  

Abstract Background For the coding part of U-Net3+, the brain tumor feature extraction ability is insufficient, leading to insufficient feature fusion when sampling on the network and reducing the segmentation accuracy. Methods In this study, we propose an improved U-Net3+ segmentation network based on stage residual. In the encoder part, the encoder based on the stage residual structure is used to reduce the degradation problem caused by the increase in network depth and enhance the feature extraction ability of the encoder, which is convenient for full feature fusion when sampling on the network. Besides, we used a filter response normalization (FRN) layer instead of a batch normalization layer to eliminate batch size impact on the network. Based on the improved U-Net3+ two-dimensional (2D) model with stage residual, IResUnet3+ three-dimensional (3D) model is constructed. We explore appropriate methods to deal with 3D data, which achieve accurate segmentation of the 3D network. Results The experimental results showed that: the sensitivity of WT, TC, and ET increased by 1.34%, 4.6%, and 8.44%, respectively. And the Dice coefficients of ET and WT were further increased by 3.43% and 1.03%, respectively. To facilitate further research, source code can be found at: https://github.com/YuOnlyLookOne/IResUnet3Plus. Conclusion In the segmentation task of brain tumor brats2018 dataset, compared with the classical networks u-net, v-net, resunet and u-net3 +, the proposed network has smaller parameters and significantly improved accuracy.


Electronics ◽  
2021 ◽  
Vol 10 (20) ◽  
pp. 2455
Author(s):  
Aijia Ding ◽  
Tingzhang Liu ◽  
Xue Zou

Due to the strong volatility of the electrical load and the defect of a time-consuming problem, in addition to overfitting existing in published forecasting methods, short-term electrical demand is difficult to forecast accurately and robustly. Given the excellent capability of weight sharing and feature extraction for convolution, a novel hybrid method based on ensemble GoogLeNet and modified deep residual networks for short-term load forecasting (STLF) is proposed to address these issues. Specifically, an ensemble GoogLeNet with dense block structure is used to strengthen feature extraction ability and generalization capability. Meanwhile, a group normalization technique is used to normalize outputs of the previous layer. Furthermore, a modified deep residual network is introduced to alleviate a vanishing gradient problem in order to improve the forecasting results. The proposed model is also adopted to conduct probabilistic load forecasting with Monte Carlo Dropout. Two acknowledged public datasets are used to evaluate the performance of the proposed methodology. Multiple experiments and comparisons with existing state-of-the-art models show that this method achieves accurate prediction results, strong generalization capability, and satisfactory coverages for different prediction intervals, along with reducing operation times.


2021 ◽  
pp. 67-71
Author(s):  
S.R. Mammadova ◽  

It is known that a series of organic compounds containing in molecule SH-, NH- qroups, including halogens, carboxylic acids and their derivatives, have the ability to form the innercomplex compounds under certain conditions. These compounds permit to carry out the extraction in acidic medium, that prevents the of process hydrolysis. They are not dissolved in water but are soluble in various solvents and form colored solutions and so may be used as an extractants. The main purpose of this paper is the study of palladium extraction ability for chlorinated naphthenic acids (CNA) synthesited in laboratory on the basis of industrial alkylphenols. Ammoniumacetate with various pH was used as a buffer to extract palladium from PdCl2·2H2O 0.1 mkg/ml solution. The main task for the use of inert organic compound in extraction is the selection of reagent which dissolves it but does not form any compound. With this aim the influence of different solvents on their reagent was researched. The experiments show that chloronaphthenic acid is dissolved well in organic solvents. Its solution, for example in kerosene, is light-resistant, does not hydrolyze in water, alkalis and acids. So, chloronaphthenic recomendefor palladium extraction


Sensors ◽  
2021 ◽  
Vol 21 (19) ◽  
pp. 6391
Author(s):  
Hongjie Deng ◽  
Daji Ergu ◽  
Fangyao Liu ◽  
Bo Ma ◽  
Ying Cai

With the continuous development of artificial intelligence, embedding object detection algorithms into autonomous underwater detectors for marine garbage cleanup has become an emerging application area. Considering the complexity of the marine environment and the low resolution of the images taken by underwater detectors, this paper proposes an improved algorithm based on Mask R-CNN, with the aim of achieving high accuracy marine garbage detection and instance segmentation. First, the idea of dilated convolution is introduced in the Feature Pyramid Network to enhance feature extraction ability for small objects. Secondly, the spatial-channel attention mechanism is used to make features learn adaptively. It can effectively focus attention on detection objects. Third, the re-scoring branch is added to improve the accuracy of instance segmentation by scoring the predicted masks based on the method of Generalized Intersection over Union. Finally, we train the proposed algorithm in this paper on the Transcan dataset, evaluating its effectiveness by various metrics and comparing it with existing algorithms. The experimental results show that compared to the baseline provided by the Transcan dataset, the algorithm in this paper improves the mAP indexes on the two tasks of garbage detection and instance segmentation by 9.6 and 5.0, respectively, which significantly improves the algorithm performance. Thus, it can be better applied in the marine environment and achieve high precision object detection and instance segmentation.


Sign in / Sign up

Export Citation Format

Share Document