scholarly journals Development of Synthetic and Natural Materials for Tissue Engineering Applications Using Adipose Stem Cells

2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Yunfan He ◽  
Feng Lu

Adipose stem cells have prominent implications in tissue regeneration due to their abundance and relative ease of harvest from adipose tissue and their abilities to differentiate into mature cells of various tissue lineages and secrete various growth cytokines. Development of tissue engineering techniques in combination with various carrier scaffolds and adipose stem cells offers great potential in overcoming the existing limitations constraining classical approaches used in plastic and reconstructive surgery. However, as most tissue engineering techniques are new and highly experimental, there are still many practical challenges that must be overcome before laboratory research can lead to large-scale clinical applications. Tissue engineering is currently a growing field of medical research; in this review, we will discuss the progress in research on biomaterials and scaffolds for tissue engineering applications using adipose stem cells.

2018 ◽  
Vol 15 (4) ◽  
pp. 660-672 ◽  
Author(s):  
Chih-Chien Wang ◽  
Chih-Hsin Wang ◽  
Hsiang-Cheng Chen ◽  
Juin-Hong Cherng ◽  
Shu-Jen Chang ◽  
...  

2021 ◽  
Vol 8 (6) ◽  
pp. 13-21
Author(s):  
Odia Osemwegie ◽  
Lihua Lou ◽  
Ernest Smith ◽  
Seshadri Ramkumar

Nanofiber substrates have been used for various biomedical applications, including tissue regeneration, drug delivery, and in-vitro cell culture. However, despite the high volume of studies in this field, current clinical applications remain minimal. Innovations for their applications continuously generate exciting prospects. In this review, we discuss some of these novel innovations and identify critical factors to consider before their adoption for biomedical applications.


2021 ◽  
Author(s):  
Ika Dewi Ana ◽  
Anggraini Barlian ◽  
Atik Choirul Hidajah ◽  
Christofora Hanny Wijaya ◽  
Hari Basuki Notobroto ◽  
...  

In dentistry, problems of craniofacial, osteochondral, periodontal tissue, nerve, pulp or endodontics injuries, and osteoarthritis need regenerative therapy. The use of stem cells in dental tissue engineering pays a lot of increased attention, but there are challenges for its clinical applications. Therefore, cell-free-based tissue engineering using exosomes isolated from stem cells is regarded an alternative approach in regenerative dentistry. However, practical use of exosome is restricted by limited secretion capability of cells. For future regenerative treatment with exosomes, efficient strategies for large-scale clinical applications are being studied, including the use of ceramics-based scaffold to enhance exosome production and secretion which can resolve limited exosome secretory from the cells when compared with the existing methods available. Indeed, more research needs to be done on these strategies going forward.


2007 ◽  
Vol 74 (4) ◽  
pp. 197-205
Author(s):  
F. Pinto ◽  
A. Calarco ◽  
A. Brescia ◽  
E. Sacco ◽  
A. D'addessi ◽  
...  

Purpose Congenital abnormalities and acquired disorders can lead to organ damage and loss. Nowadays, transplantation represents the only effective treatment option. However, there is a marked decrease in the number of organ donors, which is even yearly worsening due to the population aging. The regenerative medicine represents a realistic option that allows to restore and maintain the normal functions of tissues and organs. This article reviews the principles of regenerative medicine and the recent advances with regard to its application to the genitourinary tract. Recent findings The field of regenerative medicine involves different areas of technology, such as tissue engineering, stem cells and cloning. Tissue engineering involves the field of cell transplantation, materials science and engineering in order to create functional replacement tissues. Stem cells and cloning permit the extraction of pluripotent, embryonic stem cells offering a potentially limitless source of cells for tissue engineering applications. Most current strategies for tissue engineering depend upon a sample of autologous cells from the patient's diseased organ. Biopsies from patients with extensive end-stage organ failure, however, may not yield enough normal cells. In these situations, stem cells are envisaged as being an alternative source. Stem cells can be derived from discarded human embryos (human embryonic stem cells), from fetal tissue or from adult sources (bone marrow, fat, skin). Therapeutic cloning offers a potentially limitless source of cells for tissue engineering applications. Regenerative medicine and tissue engineering scientists have increasingly applied the principles of cell transplantation, materials science and bioengineering to construct biological substitutes that will restore and maintain normal function in urological diseased and injured tissues such as kidney, ureter, bladder, urethra and penis. Conclusions Regenerative medicine offers several applications in acquired and congenital genitourinary diseases. Tissue engineering, stem cells and, mostly, cloning have been applied in experimental studies with excellent results. Few preliminary human applications have been developed with promising results.


2004 ◽  
Vol 83 (7) ◽  
pp. 523-528 ◽  
Author(s):  
M.T. Duailibi ◽  
S.E. Duailibi ◽  
C.S. Young ◽  
J.D. Bartlett ◽  
J.P. Vacanti ◽  
...  

The recent bioengineering of complex tooth structures from pig tooth bud tissues suggests the potential for the regeneration of mammalian dental tissues. We have improved tooth bioengineering methods by comparing the utility of cultured rat tooth bud cells obtained from three- to seven-day post-natal (dpn) rats for tooth-tissue-engineering applications. Cell-seeded biodegradable scaffolds were grown in the omenta of adult rat hosts for 12 wks, then harvested. Analyses of 12-week implant tissues demonstrated that dissociated 4-dpn rat tooth bud cells seeded for 1 hr onto PGA or PLGA scaffolds generated bioengineered tooth tissues most reliably. We conclude that tooth-tissue-engineering methods can be used to generate both pig and rat tooth tissues. Furthermore, our ability to bioengineer tooth structures from cultured tooth bud cells suggests that dental epithelial and mesenchymal stem cells can be maintained in vitro for at least 6 days.


Sign in / Sign up

Export Citation Format

Share Document