scholarly journals Modulation of Erythrocyte Plasma Membrane Redox System Activity by Curcumin

2016 ◽  
Vol 2016 ◽  
pp. 1-8 ◽  
Author(s):  
Prabhakar Singh ◽  
Rajesh Kumar Kesharwani ◽  
Krishna Misra ◽  
Syed Ibrahim Rizvi

Plasma membrane redox system (PMRS) is an electron transport chain system ubiquitously present throughout all cell types. It transfers electron from intracellular substrates to extracellular acceptors for regulation of redox status. Curcumin, isolated fromCurcuma longa,has modulatory effects on cellular physiology due to its membrane interaction ability and antioxidant potential. The present study investigates the effect of curcumin on PMRS activity of erythrocytes isolated from Wistar ratsin vitroandin vivoand validated through anin silicodocking simulation study using Molegro Virtual Docker (MVD). Effects of curcumin were also evaluated on level of glutathione (GSH) and the oxidant potential of plasma measured in terms of plasma ferric equivalent oxidative potentials (PFEOP). Results show that curcumin significantly (p<0.01) downregulated the PMRS activity in a dose-dependent manner. Molecular docking results suggest that curcumin interacts with amino acids at the active site cavity of cytochromeb5reductase, a key constituent of PMRS. Curcumin also increased the GSH level in erythrocytes and plasma while simultaneously decreasing the oxidant potential (PFEOP) of plasma. Altered PMRS activity and redox status are associated with the pathophysiology of several health complications including aging and diabetes; hence, the above finding may explain part of the role of curcumin in health beneficial effects.

1984 ◽  
Vol 16 (2) ◽  
pp. 143-152 ◽  
Author(s):  
Prakash C. Misra ◽  
Theodore A. Craig ◽  
Frederick L. Crane

2014 ◽  
Vol 205 (2) ◽  
pp. 217-232 ◽  
Author(s):  
Cortney C. Winkle ◽  
Leslie M. McClain ◽  
Juli G. Valtschanoff ◽  
Charles S. Park ◽  
Christopher Maglione ◽  
...  

Developmental axon branching dramatically increases synaptic capacity and neuronal surface area. Netrin-1 promotes branching and synaptogenesis, but the mechanism by which Netrin-1 stimulates plasma membrane expansion is unknown. We demonstrate that SNARE-mediated exocytosis is a prerequisite for axon branching and identify the E3 ubiquitin ligase TRIM9 as a critical catalytic link between Netrin-1 and exocytic SNARE machinery in murine cortical neurons. TRIM9 ligase activity promotes SNARE-mediated vesicle fusion and axon branching in a Netrin-dependent manner. We identified a direct interaction between TRIM9 and the Netrin-1 receptor DCC as well as a Netrin-1–sensitive interaction between TRIM9 and the SNARE component SNAP25. The interaction with SNAP25 negatively regulates SNARE-mediated exocytosis and axon branching in the absence of Netrin-1. Deletion of TRIM9 elevated exocytosis in vitro and increased axon branching in vitro and in vivo. Our data provide a novel model for the spatial regulation of axon branching by Netrin-1, in which localized plasma membrane expansion occurs via TRIM9-dependent regulation of SNARE-mediated vesicle fusion.


Redox Report ◽  
2000 ◽  
Vol 5 (2-3) ◽  
pp. 148-150 ◽  
Author(s):  
J.C. Rodríguez-Aguilera ◽  
G. López-Lluch ◽  
C. Santos-Ocaña ◽  
J.M. Villalba ◽  
C. Gómez-Díaz ◽  
...  

2019 ◽  
Vol 21 (Supplement_6) ◽  
pp. vi43-vi43
Author(s):  
Hamid Suhail ◽  
Rattan Ramandeep ◽  
Giri Shailendra ◽  
Ana deCarvalho ◽  
Steven Kalkanis ◽  
...  

Abstract Glioblastoma (GBM) is a highly glycolytic aggressive brain tumor characterized by increased proliferation and resistance to chemotherapy and radiotherapy. AMPK has been reported as tumor suppressor and reprograms the cellular metabolic pathways and produces a metabolic checkpoint on the cell cycle though mTORC1, p53 and other modulators involved in cell proliferation, growth, survival and autophagy. The AMPK activity is diminished in gastric, breast and ovarian tumor cells by activated PI3K-AKT pathways. Cancer cells are able to reprogram their energy metabolism to compensate their high bioenergetic demands needed for their aggressive growth and survival. Curcumin exhibits pleiotropic properties and activate MAPK and leads to suppress p53, Wnt/β-catenin, SHH and PI3K-AKT signaling pathways. Curcumin or diferuloylmethane is a yellow polyphenol extracted from the rhizome of turmeric (Curcuma longa). The absorption, biodistribution, metabolism, and elimination studies of curcumin have, unfortunately, shown only poor absorption, rapid metabolism, and elimination of curcumin as major reasons for poor bioavailability of this interesting polyphenolic compound. We have engineered a curcumin-based nanoparticle (Curc-NP) which demonstrates high water solubility. Curc-NP was effectively transported into the cells by nanoparticles through endocytosis and localized around the nuclei in the cytoplasms. In vitro studies proved that the cytotoxicity of Curc-NP is more effective against U-251 cell line in a dose-dependent manner. Systemic delivery of Curc-NP led to preferentially accumulation in an orthotopic preclinical glioma model minimizing systemic toxic effect. Multicolor microscopy images of the tumor tissue showed that Curc-NP particles were internalized inside tumor cells selectively and localized within nuclei. Curc-NP demonstrated to restore the dysregulated AMPK activity in glioma cells. Curc-NP-induced AMPK activation resulted in inhibition of oncogenic signalling pathways in glioma. Curc-NP-induced metabolic reprograming in glioma cells will be examined and the in vivo therapeutic efficacy of Curc-NP in an experimental rat model of GBM will also be evaluated.


2006 ◽  
Vol 9 (4) ◽  
pp. 470-474 ◽  
Author(s):  
Syed Ibrahim Rizvi ◽  
Rashmi Jha ◽  
Pawan Kumar Maurya

2016 ◽  
Vol 50 (5) ◽  
pp. 557-569 ◽  
Author(s):  
Idolo Tedesco ◽  
Stefania Moccia ◽  
Silvestro Volpe ◽  
Giovanna Alfieri ◽  
Daniela Strollo ◽  
...  

1995 ◽  
Vol 27 (6) ◽  
pp. 605-611 ◽  
Author(s):  
Antonio del Castillo-Olivares ◽  
Alicia Esteban del Valle ◽  
Javier Márquez ◽  
Ignacio NÚñez de Castro ◽  
Miguel ángel Medina

1982 ◽  
Vol 204 (3) ◽  
pp. 795-801 ◽  
Author(s):  
Michael G. Clark ◽  
Eric J. Partick ◽  
Frederick L. Crane

1. Regulation of the reduction of ferricyanide by the isolated perfused rat liver was studied. 2. The rate of reduction was dependent on the rate of supply of ferricyanide and independent of perfusate oxygen concentration. 3. The effect of pH was also examined; the rate of reduction was optimal at pH 7.4 and was inhibited to a greater extent by pH values below 7.4 than those above 7.4. 4. The effects of substrates on the rate of ferricyanide reduction was assessed. Reductants of the cytosolic and mitochondrial NADH/NAD+ couple were tested. 2-Hydroxybutyrate (10mm), lactate (10mm), glycerol (10mm) and ethanol (10mm) each had no effect. Dihydroxyacetone (10mm) stimulated the rate. 5. Dehydroascorbate (1mm), stimulated the rate of ferricyanide reduction; the stimulation did not appear to be attributable to the production of reduced substances that were excreted to reduce extracellular ferricyanide. 6. The effects of glucagon and cyclic AMP on the rate of ferricyanide reduction were examined. Glucagon inhibited the rate by approx. 30% and half-maximal inhibition occurred at 0.1 nm, corresponding to the concentration at which half-maximal stimulation of glucose release occurred. Cyclic AMP stimulated glucose release but had no significant effect on the rate of ferricyanide reduction. It is concluded that the trans-plasma membrane redox system of liver that reduces extracellular ferricyanide is regulated by glucagon. The rate is also altered by the substrate dihydroxyacetone. The effect of glucagon may be direct as it cannot be mimicked by cyclic AMP and it occurs directly following exposure to the hormone.


Sign in / Sign up

Export Citation Format

Share Document