scholarly journals Research on Aerodynamic Noise Reduction for High-Speed Trains

2016 ◽  
Vol 2016 ◽  
pp. 1-21 ◽  
Author(s):  
Yadong Zhang ◽  
Jiye Zhang ◽  
Tian Li ◽  
Liang Zhang ◽  
Weihua Zhang

A broadband noise source model based on Lighthill’s acoustic theory was used to perform numerical simulations of the aerodynamic noise sources for a high-speed train. The near-field unsteady flow around a high-speed train was analysed based on a delayed detached-eddy simulation (DDES) using the finite volume method with high-order difference schemes. The far-field aerodynamic noise from a high-speed train was predicted using a computational fluid dynamics (CFD)/Ffowcs Williams-Hawkings (FW-H) acoustic analogy. An analysis of noise reduction methods based on the main noise sources was performed. An aerodynamic noise model for a full-scale high-speed train, including three coaches with six bogies, two inter-coach spacings, two windscreen wipers, and two pantographs, was established. Several low-noise design improvements for the high-speed train were identified, based primarily on the main noise sources; these improvements included the choice of the knuckle-downstream or knuckle-upstream pantograph orientation as well as different pantograph fairing structures, pantograph fairing installation positions, pantograph lifting configurations, inter-coach spacings, and bogie skirt boards. Based on the analysis, we designed a low-noise structure for a full-scale high-speed train with an average sound pressure level (SPL) 3.2 dB(A) lower than that of the original train. Thus, the noise reduction design goal was achieved. In addition, the accuracy of the aerodynamic noise calculation method was demonstrated via experimental wind tunnel tests.

Author(s):  
Hogun Kim ◽  
Zhiwei Hu ◽  
David Thompson

For high-speed trains, the aerodynamic noise becomes an essential consideration in the train design. The pantograph and pantograph recess are recognised as important sources of aerodynamic noise. This paper studies the flow characteristics and noise contributions of three typical high-speed train roof configurations, namely a cavity, a ramped cavity and a flat roof with side insulation plates. The Improved Delayed Detached-Eddy Simulation approach is used for the flow calculations and the Ffowcs Williams & Hawkings aeroacoustic analogy is used for far-field acoustic predictions. Simulations are presented for a simplified train body at 1/10 scale and 300 km/h with these three roof configurations. In each case, two simplified pantographs (one retracted and one raised) are located on the roof. Analysis of the flow fields obtained from numerical simulations clearly shows the influence of the train roof configuration on the flow behaviour, including flow separations, reattachment and vortex shedding, which are potential noise sources. A highly unsteady flow occurs downstream when the train roof has a cavity or ramped cavity due to flow separation at the cavity trailing edge, while vortical flow is generated by the side insulation plates. For the ramped cavity configuration, moderately large pressure fluctuations appear on the cavity outside walls in the upstream region due to unsteady flow from the upstream edge of the plate. The raised pantograph, roof cavity, and ramped cavity are identified as the dominant noise sources. When the retracted pantograph is located in the ramped roof cavity, its noise contribution is less important. Furthermore, the insulation plates also generate tonal components in the noise spectra. Of the three configurations considered, the roof cavity configuration radiates the least noise at the side receiver in terms of A-weighted level.


2014 ◽  
Vol 1044-1045 ◽  
pp. 643-649
Author(s):  
Ji Zhou Liu ◽  
Ren Xian Li ◽  
Peng Xiang Cui

For high speed trains running at 300km/h or more, the aerodynamic noise becomes the primary noise source. A good knowledge of the location, spectral characteristics and propagation behavior of the noise source and the corresponding methods to reduce the effect of the aerodynamic noise are of crucial necessity during the design process of the high speed train. Based on the Lighthill Analogy, the pressure fluctuation of air at the surface of the train is acquired by simulating the flow field of a CRH3 high speed train running at 200 km/h, 300 km/h, 400 km/h and 500km/h by means of large eddy simulation method. By Fourier transformation, the distribution and the spectral characteristics of the surface acoustic dipole sources are obtained. The analysis of the results shows that the aerodynamic noise of the high speed train is a broadband noise with a strong radiation power band from 50Hz to 1000Hz. The dipole acoustic power calculated by statistically averaged on train surface is found to be proportional to the sixth power of running speed of the high speed train. The first and second bogie, the inter-car gap, the air deflector of the power train and the train nose of the last wagon are the main noise sources that contain high radiation energy.


Entropy ◽  
2021 ◽  
Vol 23 (10) ◽  
pp. 1328
Author(s):  
Bowen Hou ◽  
Jiajing Li ◽  
Liang Gao ◽  
Di Wang

Based on elastic mechanics, the fluid–structure coupling theory and the finite element method, a high-speed railway wheel-rail rolling-aerodynamic noise model is established to realize the combined simulation and prediction of the vibrations, rolling noise and aerodynamic noise in wheel-rail systems. The field test data of the Beijing–Shenyang line are considered to verify the model reliability. In addition, the directivity of each sound source at different frequencies is analyzed. Based on this analysis, noise reduction measures are proposed. At a low frequency of 300 Hz, the wheel-rail area mainly contributes to the aerodynamic noise, and as the frequency increases, the wheel-rail rolling noise becomes dominant. When the frequency is less than 1000 Hz, the radiated noise fluctuates around the cylindrical surface, and the directivity of the sound is ambiguous. When the frequency is in the middle- and high-frequency bands, exceeding 1000 Hz, both the rolling and total noise exhibit a notable directivity in the directions of 20–30° and 70–90°, and thus, noise reduction measures can be implemented in these directions.


Author(s):  
Eleonora Neri ◽  
John Kennedy ◽  
Gareth J. Bennett

The reduction of noise generated by aircraft at take-off and approach is crucial in the design of new commercial aircraft. Landing gear noise is significant contribution to the total noise sources during approach. The noise is generated by the interaction between the non-aerodynamic components of the landing gear and the flow, which leads to turbulence generated noise. This research presents results from the European Clean Sky funded ALLEGRA project. The project investigated a full-scale Nose Landing Gear (NLG) model featuring the belly fuselage, bay cavity and hydraulic dressing. A number of low noise treatments were applied to the NLG model including a ramp door spoiler, a wheel axel wind shield, wheel hub caps and perforated fairings. Over 250 far field sensors were deployed in a number of microphone arrays. Since technologies were tested both in isolation and in combination the additive effects of the technologies can be assessed. This study describes the different techniques used to quantify the contribution of each technology to the global noise reduction. The noise reduction technologies will be assessed as a function of frequency range and through beamforming techniques such as source deletion.


Author(s):  
JY Zhu ◽  
ZW Hu ◽  
DJ Thompson

Aerodynamic noise is a significant source for high-speed trains but its prediction in an industrial context is difficult to achieve. In this article, the flow and aerodynamic noise behaviour of a simplified high-speed train bogie at scale 1:10 are studied through numerical simulations. The bogie is situated in a cavity beneath the train and the influence of a bogie fairing on the flow and flow-induced noise that developed around the bogie area is investigated. A two-stage hybrid method is used, which combines the computational fluid dynamics and an acoustic analogy. The near-field unsteady flow is obtained by solving the unsteady three-dimensional Navier–Stokes equations numerically using delayed detached-eddy simulation, and the data are utilised to predict the far-field noise based on the Ffowcs Williams–Hawkings acoustic analogy. Results show that when the bogie is located inside the bogie cavity, the shear layer developed from the leading edges of the cavity interacts strongly with the flow separated from the upstream components of the bogie and the cavity walls. Therefore, a highly turbulent flow is generated within the bogie cavity due to the strong flow impingements and flow recirculations occurring there. For the case without the fairing, the surface shape discontinuity in the bogie cavity along the carbody sidewalls generates strong flow unsteadiness around these regions. When the fairing is mounted in front of the bogie cavity, the flow interactions between the bogie cavity and the outer region are reduced and the development of turbulence outside the fairing is greatly weakened. Based on the predictions of the noise radiated to the trackside using a permeable data surface parallel to the carbody sidewall, it has been found that the bogie fairing is effective in reducing the noise generated in most of the frequency range, and a noise reduction of around 5 dB is achieved in the farfield for the current model case.


2013 ◽  
Author(s):  
Hee-Min Noh ◽  
Hyo-In Koh ◽  
Seog-won Kim ◽  
Seung-Ho Chang

2019 ◽  
Vol 9 (11) ◽  
pp. 2332 ◽  
Author(s):  
Yongfang Yao ◽  
Zhenxu Sun ◽  
Guowei Yang ◽  
Wen Liu ◽  
Prasert Prapamonthon

The high-speed-train pantograph is a complex structure that consists of different rod-shaped and rectangular surfaces. Flow phenomena around the pantograph are complicated and can cause a large proportion of aerodynamic noise, which is one of the main aerodynamic noise sources of a high-speed train. Therefore, better understanding of aerodynamic noise characteristics is needed. In this study, the large eddy simulation (LES) coupled with the acoustic finite element method (FEM) is applied to analyze aerodynamic noise characteristics of a high-speed train with a pantograph installed on different configurations of the roof base, i.e. flush and sunken surfaces. Numerical results are presented in terms of acoustic pressure spectra and distributions of aerodynamic noise in near-field and far-field regions under up- and down-pantograph as well as flushed and sunken pantograph base conditions. The results show that the pantograph with the sunken base configuration provides better aerodynamic noise performances when compared to that with the flush base configuration. The noise induced by the down-pantograph is higher than that by the up-pantograph under the same condition under the pantograph shape and opening direction selected in this paper. The results also indicate that, in general, the directivity of the noise induced by the down-pantograph with sunken base configuration is slighter than that with the flush configuration. However, for the up-pantograph, the directivity is close to each other in Y-Z or X-Z plane whether it is under flush or sunken roof base condition. However, the sunken installation is still conducive to the noise environment on both sides of the track.


2012 ◽  
Vol 36 (5) ◽  
pp. 589-604 ◽  
Author(s):  
Rakesh C. Ramachandran ◽  
Ganesh Raman ◽  
Robert P. Dougherty

Locating the dominant noise sources on a wind turbine is an important problem in designing and developing low noise wind turbines. Previously very large microphone arrays were used to locate these sources. The primary focus of this paper is to show that using a compact and mobile microphone array with advanced beamforming algorithms, the noise sources can be successfully located and quantified. The results from the qualification experiments on the microphone array conducted in laboratory using synthetic noise sources show the differences between the various beamforming algorithms used in this study (both frequency and time domain algorithms). The initial experimental results on a full scale wind turbine reveal that it is indeed possible to locate the noise sources using a compact microphone array by successfully locating the two dominant noise sources on the wind turbine namely, aerodynamic noise near the blade tip and mechanical noise from nacelle.


Sign in / Sign up

Export Citation Format

Share Document