Effect of different typical high speed train pantograph recess configurations on aerodynamic noise

Author(s):  
Hogun Kim ◽  
Zhiwei Hu ◽  
David Thompson

For high-speed trains, the aerodynamic noise becomes an essential consideration in the train design. The pantograph and pantograph recess are recognised as important sources of aerodynamic noise. This paper studies the flow characteristics and noise contributions of three typical high-speed train roof configurations, namely a cavity, a ramped cavity and a flat roof with side insulation plates. The Improved Delayed Detached-Eddy Simulation approach is used for the flow calculations and the Ffowcs Williams & Hawkings aeroacoustic analogy is used for far-field acoustic predictions. Simulations are presented for a simplified train body at 1/10 scale and 300 km/h with these three roof configurations. In each case, two simplified pantographs (one retracted and one raised) are located on the roof. Analysis of the flow fields obtained from numerical simulations clearly shows the influence of the train roof configuration on the flow behaviour, including flow separations, reattachment and vortex shedding, which are potential noise sources. A highly unsteady flow occurs downstream when the train roof has a cavity or ramped cavity due to flow separation at the cavity trailing edge, while vortical flow is generated by the side insulation plates. For the ramped cavity configuration, moderately large pressure fluctuations appear on the cavity outside walls in the upstream region due to unsteady flow from the upstream edge of the plate. The raised pantograph, roof cavity, and ramped cavity are identified as the dominant noise sources. When the retracted pantograph is located in the ramped roof cavity, its noise contribution is less important. Furthermore, the insulation plates also generate tonal components in the noise spectra. Of the three configurations considered, the roof cavity configuration radiates the least noise at the side receiver in terms of A-weighted level.

2016 ◽  
Vol 2016 ◽  
pp. 1-21 ◽  
Author(s):  
Yadong Zhang ◽  
Jiye Zhang ◽  
Tian Li ◽  
Liang Zhang ◽  
Weihua Zhang

A broadband noise source model based on Lighthill’s acoustic theory was used to perform numerical simulations of the aerodynamic noise sources for a high-speed train. The near-field unsteady flow around a high-speed train was analysed based on a delayed detached-eddy simulation (DDES) using the finite volume method with high-order difference schemes. The far-field aerodynamic noise from a high-speed train was predicted using a computational fluid dynamics (CFD)/Ffowcs Williams-Hawkings (FW-H) acoustic analogy. An analysis of noise reduction methods based on the main noise sources was performed. An aerodynamic noise model for a full-scale high-speed train, including three coaches with six bogies, two inter-coach spacings, two windscreen wipers, and two pantographs, was established. Several low-noise design improvements for the high-speed train were identified, based primarily on the main noise sources; these improvements included the choice of the knuckle-downstream or knuckle-upstream pantograph orientation as well as different pantograph fairing structures, pantograph fairing installation positions, pantograph lifting configurations, inter-coach spacings, and bogie skirt boards. Based on the analysis, we designed a low-noise structure for a full-scale high-speed train with an average sound pressure level (SPL) 3.2 dB(A) lower than that of the original train. Thus, the noise reduction design goal was achieved. In addition, the accuracy of the aerodynamic noise calculation method was demonstrated via experimental wind tunnel tests.


Author(s):  
JY Zhu ◽  
ZW Hu ◽  
DJ Thompson

Aerodynamic noise is a significant source for high-speed trains but its prediction in an industrial context is difficult to achieve. In this article, the flow and aerodynamic noise behaviour of a simplified high-speed train bogie at scale 1:10 are studied through numerical simulations. The bogie is situated in a cavity beneath the train and the influence of a bogie fairing on the flow and flow-induced noise that developed around the bogie area is investigated. A two-stage hybrid method is used, which combines the computational fluid dynamics and an acoustic analogy. The near-field unsteady flow is obtained by solving the unsteady three-dimensional Navier–Stokes equations numerically using delayed detached-eddy simulation, and the data are utilised to predict the far-field noise based on the Ffowcs Williams–Hawkings acoustic analogy. Results show that when the bogie is located inside the bogie cavity, the shear layer developed from the leading edges of the cavity interacts strongly with the flow separated from the upstream components of the bogie and the cavity walls. Therefore, a highly turbulent flow is generated within the bogie cavity due to the strong flow impingements and flow recirculations occurring there. For the case without the fairing, the surface shape discontinuity in the bogie cavity along the carbody sidewalls generates strong flow unsteadiness around these regions. When the fairing is mounted in front of the bogie cavity, the flow interactions between the bogie cavity and the outer region are reduced and the development of turbulence outside the fairing is greatly weakened. Based on the predictions of the noise radiated to the trackside using a permeable data surface parallel to the carbody sidewall, it has been found that the bogie fairing is effective in reducing the noise generated in most of the frequency range, and a noise reduction of around 5 dB is achieved in the farfield for the current model case.


2019 ◽  
Vol 9 (11) ◽  
pp. 2332 ◽  
Author(s):  
Yongfang Yao ◽  
Zhenxu Sun ◽  
Guowei Yang ◽  
Wen Liu ◽  
Prasert Prapamonthon

The high-speed-train pantograph is a complex structure that consists of different rod-shaped and rectangular surfaces. Flow phenomena around the pantograph are complicated and can cause a large proportion of aerodynamic noise, which is one of the main aerodynamic noise sources of a high-speed train. Therefore, better understanding of aerodynamic noise characteristics is needed. In this study, the large eddy simulation (LES) coupled with the acoustic finite element method (FEM) is applied to analyze aerodynamic noise characteristics of a high-speed train with a pantograph installed on different configurations of the roof base, i.e. flush and sunken surfaces. Numerical results are presented in terms of acoustic pressure spectra and distributions of aerodynamic noise in near-field and far-field regions under up- and down-pantograph as well as flushed and sunken pantograph base conditions. The results show that the pantograph with the sunken base configuration provides better aerodynamic noise performances when compared to that with the flush base configuration. The noise induced by the down-pantograph is higher than that by the up-pantograph under the same condition under the pantograph shape and opening direction selected in this paper. The results also indicate that, in general, the directivity of the noise induced by the down-pantograph with sunken base configuration is slighter than that with the flush configuration. However, for the up-pantograph, the directivity is close to each other in Y-Z or X-Z plane whether it is under flush or sunken roof base condition. However, the sunken installation is still conducive to the noise environment on both sides of the track.


2022 ◽  
Vol 130 (3) ◽  
pp. 1371-1386
Author(s):  
Deng Qin ◽  
Tian Li ◽  
Honglin Wang ◽  
Jizhong Yang ◽  
Yao Jiang ◽  
...  

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-19 ◽  
Author(s):  
Xiao-Ming Tan ◽  
Hui-fang Liu ◽  
Zhi-Gang Yang ◽  
Jie Zhang ◽  
Zhong-gang Wang ◽  
...  

We aim to study the characteristics and mechanism of the aerodynamic noise sources for a high-speed train in a tunnel at the speeds of 50 m/s, 70 m/s, 83 m/s, and 97 m/s by means of the numerical wind tunnel model and the nonreflective boundary condition. First, the large eddy simulation model was used to simulate the fluctuating flow field around a 1/8 scale model of a high-speed train that consists of three connected vehicles with bogies in the tunnel. Next, the spectral characteristics of the aerodynamic noise source for the high-speed train were obtained by performing a Fourier transform on the fluctuating pressure. Finally, the mechanism of the aerodynamic noise was studied using the sound theory of cavity flow and the flow field structure. The results show that the spectrum pattern of the sound source energy presented broadband and multipeak characteristics for the high-speed train. The dominant distribution frequency range is from 100 Hz to 4 kHz for the high-speed train, accounting for approximately 95.1% of the total sound source energy. The peak frequencies are 400 Hz and 800 Hz. The sound source energy at 400 Hz and 800 Hz is primarily from the bogie cavities. The spectrum pattern of the sound source energy has frequency similarity for the bottom structure of the streamlined part of the head vehicle. The induced mode of the sound source energy is probably the dynamic oscillation mode of the cavity and the resonant oscillation mode of the cavity for the under-car structure at 400 Hz and 800 Hz, respectively. The numerical computation model was checked by the wind tunnel test results.


Author(s):  
C. J. Baker ◽  
S. J. Dalley ◽  
T Johnson ◽  
A Quinn ◽  
N. G. Wright

This paper describes the results of experimental work to determine the structure of the slipstream and wake of a high speed train. The experiments were carried out using a 1/25th scale model of a four-coach train on a moving model rig (MMR). Flow velocities were measured using a rake of single hot films positioned close to the model side or roof. Tests were carried out at different model speeds, with and without the simulation of a crosswind. Velocity time histories for each configuration were obtained from ensemble averages of the results of a number of runs. A small number of particle imaging velocimetry (PIV) experiments were also carried out, and a wavelet analysis revealed details of the unsteady flow structure around the vehicle. It was shown that the flowfield around the vehicle could be divided into a number of different regions of distinct flow characteristics: an upstream region, a nose region, a boundary layer region, a near wake region and a far wake region. If the results were suitably normalized, the effect of model speed was small. The effect of crosswinds was to add an increment to the slipstream and wake velocities, and this resulted in very high slipstream velocities in the nose region.


2013 ◽  
Vol 275-277 ◽  
pp. 681-686 ◽  
Author(s):  
Wei Chen ◽  
Song Ping Wu

Along with the raising of the train speed, aerodynamic noise of the high-speed train is generated more and more significantly and their reduction has become one of the key factors to control noise of the high-speed train. Aerodynamic noise radiated from the high-speed train surface was analyzed numerically. The mathematical and physical models of the three dimensional flow field of the high-speed train were established and the external steady and unsteady flow fields of the high-speed train were calculated by using the standard "k-ε" turbulence model and large eddy simulation (LES) respectively. On the basis of the steady flow field, aerodynamic noise sources on the car body surface of the high-speed train are calculated by using the broadband noise source model. On the basis of the unsteady flow field, the time domain characteristics of fluctuating pressures on the car body surface are analyzed. The sound pressure level on the surface pressure demonstrating is calculated and the flow field of some critical parts is analyzed.


2012 ◽  
Vol 19 ◽  
pp. 206-213
Author(s):  
DANG-GUO YANG ◽  
JIAN-QIANG LI ◽  
ZHAO-LIN FAN ◽  
XIN-FU LUO

An experimental study was conducted in a 0.6m by 0.6m wind-tunnel to analyze effects of boundary-layer thickness on unsteady flow characteristics inside a rectangular open cavity at subsonic and transonic speeds. The sound pressure level (SPL) distributions at the centerline of the cavity floor and Sound pressure frequency spectrum (SPFS) characteristics on some measurement positions presented herein was obtained with cavity length-to-depth ratio (L/D) of 8 over Mach numbers (Ma) of 0.6 and 1.2 at a Reynolds numbers (Re) of 1.23 × 107 and 2.02 × 107 per meter under different boundary-layer thickness to cavity-depth ratios (δ/D). The experimental angle of attack, yawing and rolling angles were 0°. The results indicate that decrease in δ/D leads to severe flow separation and unsteady pressure fluctuation, which induces increase in SPL at same measurement points inside the cavity at Ma of 0.6. At Ma of 1.2, decrease in δ/D results in enhancing compressible waves. Generally, decrease in δ/D induces more flow self-sustained oscillation frequencies. It also makes severer aerodynamic noise inside the open cavity.


2013 ◽  
Vol 664 ◽  
pp. 191-196
Author(s):  
You Gang Xiao ◽  
Yu Shi

For clarifying the noise in tunnel affected by pantograph and bogie, which are the most important noise sources, the noises near pantograph and bogie in a high-speed train were tested by multi-channel noise measurement and analysis system in tunnel, and compared with those measured outside the High-speed train and on an open field. The results show that the interior vehicle noise is spatially non-homogeneous in the whole carriage, the larger sound pressure level (SPL) near pantograph are next to ceiling, and near bogie next to floor. The noise spectra show a broad band feature, and dominated by the frequency contents among 100Hz-2kHz, so the countermeasures against noise should be within these range.


Sign in / Sign up

Export Citation Format

Share Document