scholarly journals Calculation of a Health Index of Oil-Paper Transformers Insulation with Binary Logistic Regression

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Weijie Zuo ◽  
Haiwen Yuan ◽  
Yuwei Shang ◽  
Yingyi Liu ◽  
Tao Chen

This paper presents a new method for calculating the insulation health index (HI) of oil-paper transformers rated under 110 kV to provide a snapshot of health condition using binary logistic regression. Oil breakdown voltage (BDV), total acidity of oil, 2-Furfuraldehyde content, and dissolved gas analysis (DGA) are singled out in this method as the input data for determining HI. A sample of transformers is used to test the proposed method. The results are compared with the results calculated for the same set of transformers using fuzzy logic. The comparison results show that the proposed method is reliable and effective in evaluating transformer health condition.

Energies ◽  
2020 ◽  
Vol 13 (4) ◽  
pp. 1009 ◽  
Author(s):  
Rahman Azis Prasojo ◽  
Harry Gumilang ◽  
Suwarno ◽  
Nur Ulfa Maulidevi ◽  
Bambang Anggoro Soedjarno

In determining the severity of power transformer faults, several approaches have been previously proposed; however, most published studies do not accommodate gas level, gas rate, and Dissolved Gas Analysis (DGA) interpretation in a single approach. To increase the reliability of the faults’ severity assessment of power transformers, a novel approach in the form of fuzzy logic has been proposed as a new solution to determine faults’ severity using the combination of gas level, gas rate, and DGA interpretation from the Duval Pentagon Method (DPM). A four-level typical concentration and rate were established based on the local population. To simplify the assessment of hundreds of power transformer data, a Support Vector Machine (SVM)-based DPM with high agreements to the graphical DPM has been developed. The proposed approach has been implemented to 448 power transformers and further implementation was done to evaluate faults’ severity of power transformers from historical DGA data. This new approach yields in high agreement with the previous methods, but with better sensitivity due to the incorporation of gas level, gas rate, and DGA interpretation results in one approach.


2019 ◽  
Vol 2019 ◽  
pp. 1-10 ◽  
Author(s):  
Edwell T. Mharakurwa ◽  
G. N. Nyakoe ◽  
A. O. Akumu

Decision making on transformer insulation condition based on the evaluated incipient faults and aging stresses has been the norm for many asset managers. Despite being the extensively applied methodology in power transformer incipient fault detection, solely dissolved gas analysis (DGA) techniques cannot quantify the detected fault severity. Fault severity is the core property in transformer maintenance rankings. This paper presents a fuzzy logic methodology in determining transformer faults and severity through use of energy of fault formation of the evolved gasses during transformer faulting event. Additionally, the energy of fault formation is a temperature-dependent factor for all the associated evolved gases. Instead of using the energy-weighted DGA, the calculated total energy of related incipient fault is used for severity determination. Severity of faults detected by fuzzy logic-based key gas method is evaluated through the use of collected data from several in-service and faulty transformers. DGA results of oil samples drawn from transformers of different specifications and age are used to validate the model. Model results show that correctly detecting fault type and its severity determination based on total energy released during faults can enhance decision-making in prioritizing maintenance of faulty transformers.


Sign in / Sign up

Export Citation Format

Share Document