scholarly journals The Association of Type 2 Diabetes Mellitus with Cerebral Gray Matter Volume Is Independent of Retinal Vascular Architecture and Retinopathy

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
C. Moran ◽  
R. J. Tapp ◽  
A. D. Hughes ◽  
C. G. Magnussen ◽  
L. Blizzard ◽  
...  

It is uncertain whether small vessel disease underlies the relationship between Type 2 Diabetes Mellitus (T2DM) and brain atrophy. We aimed to study whether retinal vascular architecture, as a proxy for cerebral small vessel disease, may modify or mediate the associations of T2DM with brain volumes. In this cross-sectional study using Magnetic Resonance Imaging (MRI) scans and retinal photographs in 451 people with and without T2DM, we measured brain volumes, geometric measures of retinal vascular architecture, clinical retinopathy, and MRI cerebrovascular lesions. There were 270 people with (mean age 67.3 years) and 181 without T2DM (mean age 72.9 years). T2DM was associated with lower gray matter volume (p=0.008). T2DM was associated with greater arteriolar diameter (p=0.03) and optimality ratio (p=0.04), but these associations were attenuated by adjustments for age and sex. Only optimality ratio was associated with lower gray matter volume (p=0.03). The inclusion of retinal measures in regression models did not attenuate the association of T2DM with gray matter volume. The association of T2DM with lower gray matter volume was independent of retinal vascular architecture and clinical retinopathy. Retinal vascular measures or retinopathy may not be sufficiently sensitive to confirm a microvascular basis for T2DM-related brain atrophy.

Author(s):  
Jia Liu ◽  
Taiyuan Liu ◽  
Wenhui Wang ◽  
Lun Ma ◽  
Xiaoyue Ma ◽  
...  

2021 ◽  
Vol 15 ◽  
Author(s):  
Kevin K. K. Yu ◽  
Gladys L. Y. Cheing ◽  
Charlton Cheung ◽  
Georg S. Kranz ◽  
Alex Kwok-Kuen Cheung

Aims/hypothesis: Diabetes mellitus (DM) is associated with comorbid brain disorders. Neuroimaging studies in DM revealed neuronal degeneration in several cortical and subcortical brain regions. Previous studies indicate more pronounced brain alterations in type 2 diabetes mellitus (T2DM) than in type 1 diabetes mellitus (T1DM). However, a comparison of both types of DM in a single analysis has not been done so far. The aim of this meta-analysis was to conduct an unbiased objective investigation of neuroanatomical differences in DM by combining voxel-based morphometry (VBM) studies of T1DM and T2DM using dual disorder anatomical likelihood estimation (ALE) quantification.Methods: PubMed, Web of Science and Medline were systematically searched for publications until June 15, 2020. VBM studies comparing gray matter volume (GMV) differences between DM patients and controls at the whole-brain level were included. Study coordinates were entered into the ALE meta-analysis to investigate the extent to which T1DM, T2DM, or both conditions contribute to gray matter volume differences compared to controls.Results: Twenty studies (comprising of 1,175 patients matched with 1,013 controls) were included, with seven studies on GMV alterations in T1DM and 13 studies on GMV alterations in T2DM. ALE analysis revealed seven clusters of significantly lower GMV in T1DM and T2DM patients relative to controls across studies. Both DM subtypes showed GMV reductions in the left caudate, right superior temporal lobe, and left cuneus. Conversely, GMV reductions associated exclusively with T2DM (>99% contribution) were found in the left cingulate, right posterior lobe, right caudate and left occipital lobe. Meta-regression revealed no significant influence of study size, disease duration, and HbA1c values.Conclusions/interpretation: Our findings suggest a more pronounced gray matter atrophy in T2DM compared to T1DM. The increased risk of microvascular or macrovascular complications, as well as the disease-specific pathology of T2DM may contribute to observed GMV reductions.Systematic Review Registration: [PROSPERO], identifier [CRD42020142525].


Stroke ◽  
2018 ◽  
Vol 49 (6) ◽  
pp. 1325-1331 ◽  
Author(s):  
Junfeng Liu ◽  
Loes Rutten-Jacobs ◽  
Ming Liu ◽  
Hugh S. Markus ◽  
Matthew Traylor

2018 ◽  
Vol 31 (3) ◽  
pp. 261-268 ◽  
Author(s):  
Jacob M. Redel ◽  
Mark DiFrancesco ◽  
Jennifer Vannest ◽  
Mekibib Altaye ◽  
Dean Beebe ◽  
...  

AbstractBackground:Adults with type 2 diabetes (T2D) have significantly lower gray matter volume (GMV) compared to healthy peers. Whether GMV differences exist in youth with T2D remains unclear. Thus, we compared global and regional GMV between obese youth with T2D with age, race and sex similar healthy controls.Methods:In a cross-sectional study, 20 obese youth with T2D underwent T1-weighted brain magnetic resonance imaging (MRI). Comparisons were made to 20 age, race and sex similar controls. Differences in global and regional GMV between groups were identified using voxel-based morphometry (VBM).Results:Youth with T2D had a significantly lower global GMV-to-intracranial volume ratio (0.51±0.02 in T2D vs. 0.53±0.02 in controls, p=0.02, Cohen’sd=0.85). There were 14 regions where GMV was significantly lower in the T2D group, and nine of these were found in either the temporal or occipital lobes. There were six regions with increased GMV in T2D. All regional differences were significant at p<0.05 after adjusting for multiple comparisons.Conclusions:Results from this pilot study show obese youth with T2D have significantly lower global GMV and regional GMV differences, when compared to their age, race and sex similar peers. Future work is needed to determine whether these brain findings are a direct result of adolescent-onset T2D.


2016 ◽  
Vol 1 (1) ◽  
pp. 55-61
Author(s):  
Alina Cordunean ◽  
Roxana Hodaş ◽  
Sorin Pop ◽  
Nora Rat ◽  
Laura Jani ◽  
...  

Abstract Background: The incidence of diabetes mellitus (DM) has suffered a dramatic increase and is a serious worldwide issue. Diabetes causes microvascular and macrovascular complications including coronary artery disease (CAD) that ultimately contributes to a high rate of cardiovascular morbidity and mortality. Study aim: The aim of this study was to assess the factors associated with the atherosclerotic involvement of small coronary arteries as compared to large vessel disease, in patients with type 2 diabetes mellitus undergoing percutaneous stent coronary angioplasty. Material and methods: Thirty-one patients who underwent Multislice 64 CT assessment of coronary lesions and stent implantation at the level of the significant coronary lesion were included in the study. CT-based Calcium Score was determined in all patients. Group 1 included patients with coronary lesions located on a vessel with a reference diameter above 3 mm (n = 24) and Group 2 included patients with a coronary lesion located on a vessel with a reference diameter below 3 mm (n = 7). Results: The mean age of the study population was 62.25 ± 2.59 years in Group 1 and 64.28 ± 9.18 years in Group 2. Female gender was recorded in 38% of cases in Group 1 and in 14% of cases in Group 2. The left ventricular ejection fraction was below 45% in 13% of cases in Group 1 and in 29% of patients in Group 2. Bioabsorbable stents were implanted in 57% of coronary arteries suffering from small vessel disease, compared to 4% in the rest of the coronary arteries (p = 0.005). The Calcium Score was 552.45 ± 545.79 (95% CI: 354.41–694.64) in Group 1 compared to 1387 ± 1830.3 (95% CI: 305.85–3079.9) (p = 0.014). Conclusions: The location of the atherosclerotic process at the level of the small coronary arteries is associated with a significantly higher Calcium Score at the level of the coronary tree, and with a higher rate of bioabsorbable stent implantation.


Sign in / Sign up

Export Citation Format

Share Document