scholarly journals EOG-sEMG Human Interface for Communication

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Hiroki Tamura ◽  
Mingmin Yan ◽  
Keiko Sakurai ◽  
Koichi Tanno

The aim of this study is to present electrooculogram (EOG) and surface electromyogram (sEMG) signals that can be used as a human-computer interface. Establishing an efficient alternative channel for communication without overt speech and hand movements is important for increasing the quality of life for patients suffering from amyotrophic lateral sclerosis, muscular dystrophy, or other illnesses. In this paper, we propose an EOG-sEMG human-computer interface system for communication using both cross-channels and parallel lines channels on the face with the same electrodes. This system could record EOG and sEMG signals as “dual-modality” for pattern recognition simultaneously. Although as much as 4 patterns could be recognized, dealing with the state of the patients, we only choose two classes (left and right motion) of EOG and two classes (left blink and right blink) of sEMG which are easily to be realized for simulation and monitoring task. From the simulation results, our system achieved four-pattern classification with an accuracy of 95.1%.

2010 ◽  
Vol 2010 ◽  
pp. 1-5 ◽  
Author(s):  
A. B. Usakli ◽  
S. Gurkan ◽  
F. Aloise ◽  
G. Vecchiato ◽  
F. Babiloni

The aim of this study is to present electrooculogram signals that can be used for human computer interface efficiently. Establishing an efficient alternative channel for communication without overt speech and hand movements is important to increase the quality of life for patients suffering from Amyotrophic Lateral Sclerosis or other illnesses that prevent correct limb and facial muscular responses. We have made several experiments to compare the P300-based BCI speller and EOG-based new system. A five-letter word can be written on average in 25 seconds and in 105 seconds with the EEG-based device. Giving message such as “clean-up” could be performed in 3 seconds with the new system. The new system is more efficient than P300-based BCI system in terms of accuracy, speed, applicability, and cost efficiency. Using EOG signals, it is possible to improve the communication abilities of those patients who can move their eyes.


Neurology ◽  
2018 ◽  
Vol 91 (3) ◽  
pp. e258-e267 ◽  
Author(s):  
Jonathan R. Wolpaw ◽  
Richard S. Bedlack ◽  
Domenic J. Reda ◽  
Robert J. Ringer ◽  
Patricia G. Banks ◽  
...  

ObjectiveTo assess the reliability and usefulness of an EEG-based brain-computer interface (BCI) for patients with advanced amyotrophic lateral sclerosis (ALS) who used it independently at home for up to 18 months.MethodsOf 42 patients consented, 39 (93%) met the study criteria, and 37 (88%) were assessed for use of the Wadsworth BCI. Nine (21%) could not use the BCI. Of the other 28, 27 (men, age 28–79 years) (64%) had the BCI placed in their homes, and they and their caregivers were trained to use it. Use data were collected by Internet. Periodic visits evaluated BCI benefit and burden and quality of life.ResultsOver subsequent months, 12 (29% of the original 42) left the study because of death or rapid disease progression and 6 (14%) left because of decreased interest. Fourteen (33%) completed training and used the BCI independently, mainly for communication. Technical problems were rare. Patient and caregiver ratings indicated that BCI benefit exceeded burden. Quality of life remained stable. Of those not lost to the disease, half completed the study; all but 1 patient kept the BCI for further use.ConclusionThe Wadsworth BCI home system can function reliably and usefully when operated by patients in their homes. BCIs that support communication are at present most suitable for people who are severely disabled but are otherwise in stable health. Improvements in BCI convenience and performance, including some now underway, should increase the number of people who find them useful and the extent to which they are used.


1985 ◽  
Vol 29 (5) ◽  
pp. 475-479 ◽  
Author(s):  
R. S. Fish ◽  
K. Gandy ◽  
D. L. Imhoff ◽  
R. A. Virzi

In software engineering the argument in favor of using software tools to produce robust code is widely accepted. We maintain that the use of such tools is key to the engineering of effective user interfaces as well. Here we report on our experiences using a variety of tools to design a user interface, including cases where it was necessary to alter (sharpen) the tool in order to do the job properly. In addition to producing an effective interface, this approach led to shortened development time and far greater adherence to human systems engineering requirements. We believe that the long-term success of human interface specialists will depend on their ability to use and sharpen software tools to expedite the interface design process.


Author(s):  
Uvanesh Kasiviswanathan ◽  
Abhishek Kushwaha ◽  
Shiru Sharma

For the past few decades, an increase in experimental research has been carried out in enhancing the quality-of-life of the persons with different levels of disabilities. To enhance the lifestyle of differently disabled in terms of their mobility or movement or transportation, a proper aid with appropriate human-computer interface system is needed. So, in this chapter, a hybrid classification model is proposed, which combines and uses hM-GM and ANN models, for classifying human speech signal, especially the word for driving a wheelchair for helping the people, who seek transportation. For classifying the correct word from the phase of sentence (i.e., the human speech signal) to corresponding trigger command for an electrically powered wheelchair prototype, under the certain experimental condition, the hM-GM model yields good recognition of words, but they suffer major limitations as it relies on strong statistical properties and probability. Hence, by combining hM-GM and ANN model-based classifier for enhancing the accuracy of classifying the word to corresponding trigger command.


2020 ◽  
pp. 155005942091875
Author(s):  
Xiaoqian Yu ◽  
Leandro da Silva-Sauer ◽  
Emanuel Donchin

The P300-based brain-computer interface speller can provide motor independent communication to individuals with amyotrophic lateral sclerosis (ALS), a progressive neurodegenerative disorder that affects the motor system. P300 amplitude stability is critical for operation of the P300 speller. The P300 has good long-term stability, but to our knowledge, short-term habituation in the P300 speller has not been studied. In the current study, 15 participants: 8 ALS patients and 7 age-matched healthy volunteers (HVs), used 2 versions of P300 spellers, Face speller and Flash speller, each for 30 minutes. The ALS group performed as well as the HVs in both spellers and HVs did better with the Face speller than Flash speller while the ALS group performed equally well in both spellers. Neither intra-run P300 habituation nor inter-run P300 habituation was found. The P300 speller could be a reliable communication device for individuals with ALS.


Author(s):  
I. Scott Mackenzie

One enduring trait of computing systems is the presence of the human operator. At the human-computer interface, the nature of computing has witnessed dramatic transformations—from feeding punched cards into a reader to manipulating 3D virtual objects with an input glove. The technology at our fingertips today transcends by orders of magnitude that in the behemoth calculators of the 1940s. Yet technology must co-exist with the human interface of the day. Not surprisingly, themes on keeping pace with advances in technology in the human-computer interface and, hopefully, getting ahead, underlie many chapters in this book. The present chapter is no exception. Input devices and interaction techniques are the human operator’s baton. They set, constrain, and elicit a spectrum of actions and responses, and in a large way inject a personality on the entire human-machine system. In this chapter, we will present and explore the major issues in “input,” focusing on devices, their properties and parameters, and the possibilities for exploiting devices in advanced human-computer interfaces. To place input devices in perspective, we illustrate a classical human-factors interpretation of the human-machine interface (e.g., Chapanis, 1965, p. 20). Figure 11-1 simplifies the human and machine to three components each. The internal states of each interact in a closed-loop system through controls and displays (the machine interface) and motor-sensory behaviour (the human interface). The terms “input” and “output” are, by convention, with respect to the machine; so input devices are inputs to the machine controlled or manipulated by human “outputs.” Traditionally human outputs are our limbs—the hands, arms, legs, feet, or head—but speech and eye motions can also act as human output. Some other human output channels are breath and electrical body signals (important for disabled users). Interaction takes place at the interface (dashed line in Figure 11-1) through an output channel—displays stimulating human senses—and the input channel. In the present chapter, we are primarily interested in controls, or input devices; but, by necessity, the other components in Figure 11-1 will to some extent participate in our discussion.


1992 ◽  
Vol 36 (4) ◽  
pp. 433-437 ◽  
Author(s):  
Katsuhiko Ogawa ◽  
Shun-ichi Yonemura

Human-computer interface design guidelines are useful for developing well designed interfaces but the designer must be able to access the guideline appropriate to the application. Research is conducted to understand how designers access design guideline databases and then methods are tested to improve the usability of the databases. A design guideline database of approximately 300 guidelines is developed using a hypermedia approach. The system employs a book metaphor interface to characters and graphics in a Japanese environment. The subjects of the usability analysis are software designers who did not have any background in human factors. They were provided with the representation of a bad interface design on a piece of paper, and were instructed to improve the design through the use of the guideline database. Two common strategies were identified by observing the designers' actions: a hypothesis strategy and a checklist strategy. These strategies were analyzed using the quantities and quality of improvements recommended. The optimum database usage checks interface violations by employing the browsing function of the database; sometimes key word searches are used.


Sign in / Sign up

Export Citation Format

Share Document