scholarly journals Power Quality Investigation of Distribution Networks Embedded Wind Turbines

2016 ◽  
Vol 2016 ◽  
pp. 1-17 ◽  
Author(s):  
A. Elsherif ◽  
T. Fetouh ◽  
H. Shaaban

In recent years a multitude of events have created a new environment for the electric power infrastructure. The presence of small-scale generation near load spots is becoming common especially with the advent of renewable energy sources such as wind power energy. This type of generation is known as distributed generation (DG). The expansion of the distributed generators- (DGs-) based wind energy raises constraints on the distribution networks operation and power quality issues: voltage sag, voltage swell, voltage interruption, harmonic contents, flickering, frequency deviation, unbalance, and so forth. Consequently, the public distribution network conception and connection studies evolve in order to keep the distribution system operating in optimal conditions. In this paper, a comprehensive power quality investigation of a distribution system with embedded wind turbines has been carried out. This investigation is carried out in a comparison aspect between the conventional synchronous generators, as DGs are widely in use at present, and the different wind turbines technologies, which represent the foresightedness of the DGs. The obtained results are discussed with the IEC 61400-21 standard for testing and assessing power quality characteristics of grid-connected wind energy and the IEEE 1547-2003 standard for interconnecting distributed resources with electric power systems.

Author(s):  
Yanu Prapto Sudarmojo

World energy requirement increased significantly, the main energy source from an oil is very limited. This problem drive an enhancement develop which support small scale generator to be connected near distributed network or near load center. Distributed Generator (DG) is a power plant which have a little capacity range between 15 kW to 10 MW. Basically, DG instalation is one way to fix a voltage profile where an installed DG would inject voltage to a transmission system or electric power distribution. Bali is a tourism area which it’s electric power source got a supply from Java and some large scale plant which use fuel of oil and gas, which until now still needed more of electric energy. An addition small scale generator for Bali is very helpful where economic profit is distribution cost and transmission cost’s reduction, electric cost and saving fuel energy. Technically a distributor of DG must be done correctly and optimal from it’s size or location so that give a maximum result from economic side, minimalizing electricity loss and increase voltage profile which result an electric power quality is improved. For that, in this research will use heuristic optimation with use Quantum Genetic Alghorithm method to placing distributed generator to Bali Electricity Network. To counting electicity loss and voltage profile, a method which used to solve it is Newton Raphson method. The result of this research, DG is installed to feeder which plaed in Abang Sub-District, Karangasem District where Abang Feeder had a total 43a bus which is a part from Bali Distribution System. With using QGA, DG is installed to bus 1, 5, 7, and 302 with each DG capacity is 0,374 MW, 1,894 MW, 1,988 MW and 0,500 MW, after installment of DG, voltage profile can be fixed. Voltage profile for some bus to Abang Feeder could be fixed from 0,83 pu to 0,98 pu. Electricity loss from 1,105 MW become 0,234 MW.


IJOSTHE ◽  
2020 ◽  
Vol 7 (1) ◽  
pp. 5
Author(s):  
Ankeeta . ◽  
Vasant Acharya

Power generation through the renewable energy sources has become more viable and economical than the fossil fuel based power plants. By integrating small scale distributed energy resources, microgrids are being introduced as an alternative approach in generating electrical power at distribution voltage level. The power electronic interface provides the necessary flexibility, security and reliability of operation between micro-sources and the distribution system. The presence of non-linear and the unbalanced loads in the distribution system causes power quality issues in the Microgrid system. This paper explores and reviews different control strategies developed in the literature for the power quality enhancement in microgrids.


Author(s):  
Sukanta Roy ◽  
Ujjwal K. Saha

Rapid depletion rate of fossil fuels with an increasing energy demand and their high emission are imposing the evolution activities in the arena of renewable energy. To meet the future demands of renewable energy sources, wind energy is a very promising concept. In this feature, the drag based vertical axis wind turbines (VAWTs) are suitable for small scale wind energy generation for decentralized locations. However, these turbines have low power and torque coefficients as compared to other wind turbines. Numerous blade shapes have been proposed till now to improve the performance of these turbines. In the present paper, a computational study has been performed to simulate the air-flow over different blade profiles using shear stress transport (SST) k–ω turbulence model. The results obtained are validated with the available experimental data. In the dynamic simulations, the power and torque coefficients are calculated considering the blade arc angle as the variable shape parameter. The effects of drag and lift forces on the variable blade shapes are also studied in static simulations at various angular positions. The present paper tries to demonstrate an effective computational methodology to predict the flow behavior around a drag based VAWT. Through this study, it has been found possible to select an optimal blade shape from the point of its aerodynamic performance.


Author(s):  
Heliasadat Hosseinian ◽  
Hossein Shahinzadeh ◽  
Gevork B. Gharehpetian ◽  
Zohreh Azani ◽  
Mahdi Shaneh

Nowadays, unlike depleting fossil fuel resources, the integration of different types of renewable energy, as distributed generation sources, into power systems is accelerated and the technological development in this area is evolving at a frantic pace. Thus, inappropriate use of them will be irrecoverably detrimental. The power industry will reach a turning point in the pervasiveness of these infinite energy sources by three factors. Climate changes due to greenhouse gas accumulation in the atmosphere; increased demand for energy consumption all over the world, especially after the genesis of Bitcoin and base cryptocurrencies; and establishing a comprehensive perspective for the future of renewable energy. The increase in the pervasiveness of renewable energy sources in small-scale brings up new challenges for the power system operators to manage an abundant number of small-scale generation sources, called microsources. The current structure of banking systems is unable to handle such massive and high-frequency transactions. Thus the incorporation of cryptocurrencies is inevitable. In addition, by utilization of IoT-enabled devices, a large body of data will be produced must be securely transferred, stored, processed, and managed in order to boost the observability, controllability, and the level of autonomy of the smart power systems. Then the appropriate controlling measures must be performed through control signals in order to serve the loads in a stable, uninterruptible, reliable, and secure way. The data acquires from IoT devices must be analyzed using artificial intelligence methods such as big data techniques, data mining, machine learning, etc. with a scant delay or almost real-time. These measures are the controversial issues of modern power systems, which are yet a matter of debate. This study delves into the aforementioned challenges and opportunities, and the corresponding solutions for the incorporation of IoT and blockchain in power systems, particularly in the distribution level and residential section, are addressed. In the last section, the role of IoT in smart buildings and smart homes, especially for energy hubs schemes and the management of residential electric vehicle supply equipment is concisely discussed.


Author(s):  
Yuri Bulatov ◽  
◽  
Andrey Kryukov ◽  
Aleksandr Cherepanov ◽  
◽  
...  

Decentralization of electricity generation based on distributed generation plants is an important segment of the new technology platform for the power industry. On the basis of this approach, significant positive effects can be obtained, which consist in reducing financial costs of energy supply, increasing the uninterrupted power supply, improving the quality of electricity and stimulating the use of renewable energy sources. Effective use of distributed generation in electric power systems requires the development of methods and tools that provide coordinated management of normal, emergency and post-emergency modes. Of particular relevance is the problem of determining the limit operating modes of networks, at the nodal points of which relatively low power generators are connected. In some situations, for example, when using small hydraulic stations, groups of such generators can be located at significant distances for 6-10-20 kV distribution networks from consumption centers. In this case there will be a noticeable limitation of the regions of static aperiodic stability. The article presents the results of developments aimed at implementing methods for determining the limit operating modes by static aperiodic stability in networks with distributed generation plants. The proposed approach is based on the limit modes equations which provide the formation of effective algorithms for the operational finding of points belonging to the boundaries of stability regions. The results of the construction of the indicated areas for a 6 kV electric network with distributed generation plants based on low-power hydraulic stations are presented. Additionally, the transient processes in the studied electric power system were simulated in the Matlab system for various space points of the controlled mode parameters.


Mathematics ◽  
2022 ◽  
Vol 10 (2) ◽  
pp. 211
Author(s):  
Irina I. Picioroaga ◽  
Andrei M. Tudose ◽  
Dorian O. Sidea ◽  
Constantin Bulac

As disturbances due to natural disasters or man-made attacks intensify awareness regarding power systems’ resilience enhancement, the scientific community concentrates on exploring state-of-the-art technologies for emergency supply restoration strategies. Recent studies are increasingly focusing on the expanded flexibility of soft open points (SOPs) compared to conventional tie-switches to increase the restoration rate of critical loads; however, the potential of this novel technology is not limited to this aspect, with SOPs being used to improve the voltage level and increase the hosting capacity of renewable energy sources (RESs). This paper proposes a deterministic model for the optimal coordination of SOPs and distributed resources in an active distribution network (ADN) aiming at re-establishing the energy supply to critical loads after a prolonged interruption occurrence. At the same time, the support of DC microgrids with integrated RESs, embedded in SOPs, for the restoration process is explored. The efficiency of the proposed optimization model is verified based on a 24-h analysis performed on the modified IEEE 33-bus system, while considering the load and generation uncertainties as well.


Micro-grid is a potential solution for the integration and management of renewable energy generation. Power generation through renewable energy sources has become more preferential and cost-effective, by articulating small scale distributed energy resources, micro-grids are becoming an alternative method in electrical power generation at the distribution voltage level. The increment of nonlinear loads and power electronic interfaced distribution generation system (DG) in the grid creates power quality issues like harmonic distortions in the distributed power system [6] [18]. The microgrid proposed in this paper consists of a photovoltaic array which represents the main generation unit and a three-phase induction generator that supplements the variable power generated by the photovoltaic array; a battery bank is included in the micro-grid to reduce the burden of the power generated by the micro-grid during the peak period [19] [20]. The power electronic interface maintains the necessary adaptability, security and reliability of operation between renewable sources and the distribution system [18]. In this paper, a comprehensive survey on micro-grid to improve the power quality parameters like THD is taken as the main objective with the help of suitable hybrid optimization algorithm, harmonic filters, controllers and battery storage.


Electronics ◽  
2020 ◽  
Vol 10 (1) ◽  
pp. 55
Author(s):  
Busra Uzum ◽  
Ahmet Onen ◽  
Hany M. Hasanien ◽  
S. M. Muyeen

In order to meet the electricity needs of domestic or commercial buildings, solar energy is more attractive than other renewable energy sources in terms of its simplicity of installation, less dependence on the field and its economy. It is possible to extract solar energy from photovoltaic (PV) including rooftop, ground-mounted, and building integrated PV systems. Interest in rooftop PV system applications has increased in recent years due to simple installation and not occupying an external area. However, the negative effects of increased PV penetration on the distribution system are troublesome. The power loss, reverse power flow (RPF), voltage fluctuations, voltage unbalance, are causing voltage quality problems in the power network. On the other hand, variations in system frequency, power factor, and harmonics are affecting the power quality. The excessive PV penetration also the root cause of voltage stability and has an adverse effect on protection system. The aim of this article is to extensively examines the impacts of rooftop PV on distribution network and evaluate possible solution methods in terms of the voltage quality, power quality, system protection and system stability. Moreover, it is to present a comparison of the advantages/disadvantages of the solution methods discussed, and an examination of the solution methods in which artificial intelligence, deep learning and machine learning based optimization and techniques are discussed with common methods.


Sign in / Sign up

Export Citation Format

Share Document