scholarly journals Interaction of Fullerenes with Organosilanes in the Ionization Chamber of a Mass Spectrometer under Electron Impact and the Reaction of C60with Tetraphenylsilane in Solution under UV Irradiation

2016 ◽  
Vol 2016 ◽  
pp. 1-9
Author(s):  
Yury I. Lyakhovetsky ◽  
Elena A. Shilova ◽  
Alexandra P. Pleshkova ◽  
Alexander I. Belokon ◽  
Sergey O. Yakushin ◽  
...  

C60was shown to react with organosilanes Me4Si, Ph2SiH2, Ph2MeSiH, Ph4Si, andα-naphthylphenylmethylsilane in the electron ionization ion source of a mass spectrometer with the transfer of the corresponding organic radicals (Me, Ph, andα-naphthyl) from the silanes to the fullerene. The reactions were accompanied by hydrogen addition to some products and hydrogen loss from them. C70reacted with Me4Si analogously. A reaction mechanism involving homolytic dissociation of the silanes under electron impact to the corresponding organic radicals, which react further with C60at the surface of the ionization chamber of the mass spectrometer to give the respective adducts, was offered. A mechanistic study of the reaction of C60with Me4Si supported it. No silicon containing derivatives of the fullerenes were found. C60reacted with Ph4Si in solution under UV irradiation in a similar fashion furnishing phenyl derivatives of the fullerene. These results provide an additional support to the hypothesis formulated earlier thatthe homolytic reactive mass spectrometry of fullerenes (the reactions of fullerenes with other species in the ionization chambers of mass spectrometers and their mass spectral monitoring)can predict the reactivity of them toward the same reagents in solution to a significant extent.

1992 ◽  
Vol 70 (4) ◽  
pp. 1028-1032 ◽  
Author(s):  
Nigel J. Bunce ◽  
H. Stewart McKinnon ◽  
Randy J. Schnurr ◽  
Sam R. Keum ◽  
Erwin Buncel

The mass spectral fragmentation pathways of a series of phenylazoxypyridine-N-oxides have been studied under electron impact conditions using tandem mass spectrometry. Besides simple C—N cleavages, the azoxypyridine-N-oxides undergo deep-seated rearrangements directly from the molecular ion. In addition, the spectra are complicated by a purely chemical reduction of the N—O functionalities that occurs in the ion source prior to ionization.


2012 ◽  
Vol 47 ◽  
pp. 538-541
Author(s):  
Charles-Marie Tassetti ◽  
Laurent Duraffourg ◽  
Jean-Sébastien Danel ◽  
Olivier Peyssonneaux ◽  
Frédéric Progent ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document