scholarly journals Comparison of the Accuracy and Performance of Different Numbers of Classes in Discretised Solution Method for Population Balance Model

2016 ◽  
Vol 2016 ◽  
pp. 1-6
Author(s):  
Zhenliang Li ◽  
Zhien Zhou ◽  
Sheng Zhang ◽  
Hongqiang Jiang

One way of solving population balance model (PBM) in a time efficient way is by means of discretisation of the population property of interest. A computational grid, for example, vi+1=kvi (vi is the volume of particle in class i), could be used to classify the particles in discretisation techniques. However, there are still disagreements in the appropriate number of classes divided by the grids. In this study, the different numbers of classes for solving PBM were compared in terms of accuracy and performance to describe the particle size distribution (PSD) from the flocculation of activated sludge. It is found that the simulated PSDs are similar to the experimental data for all the geometric grids (vi+1:vi≤2), and there is no obvious difference among the values of calibrated parameter, ratio of breakage rate coefficient and collision efficiency, for each velocity gradient. However, the simulation results with less error could be obtained with larger number of classes, and more computational times, which show exponential relationship with the number of classes, are needed. Considering numerical accuracy and efficiency, the classes 35 or a geometric grid with factor 1.6, aligning with the Fibonacci sequence (vi+vi-1≈vi+1), is recommended for the particles in the size range of 5.5~1086 μm.

2019 ◽  
Vol 2019 ◽  
pp. 1-10
Author(s):  
Zhenliang Li ◽  
Peili Lu ◽  
Daijun Zhang ◽  
Fuzhong Song

The floc size distribution of activated sludge was simulated successfully by population balance model in the previous study (Population Balance Model and Calibration Method for Simulating the Time Evolution of Floc Size Distribution of Activated Sludge Flocculation. Desalination and Water Treatment, 67, 41-50). However, nonignorable errors exist in the simulation for the volume percentage of large flocs. This paper describes the application of a modified population balance model in the simulation of the time evolution of floc size distribution in activated sludge flocculation process under shear-induced conditions. It was found that the application of modified size dependent collision efficiency, modified breakage rate expression by assuming a maximum value, and binominal daughter-particles distribution function could improve the population balance model for activated sludge flocculation and successfully predict the dynamic changes in volume percentage distribution and mean floc size of activated sludge under different shear conditions. The results demonstrate that the maximum breakage rate was independent on the velocity gradient, and both the collision efficiency and breakage rate coefficient show a power-law relationship with the average velocity gradient; the former decreases while the latter increases with the rise of the average velocity gradient. These findings would help to understand the dynamics of activated sludge flocculation.


2020 ◽  
pp. 014459872098361
Author(s):  
Zhongbao Wu ◽  
Qingjun Du ◽  
Bei Wei ◽  
Jian Hou

Foam flooding is an effective method for enhancing oil recovery in high water-cut reservoirs and unconventional reservoirs. It is a dynamic process that includes foam generation and coalescence when foam flows through porous media. In this study, a foam flooding simulation model was established based on the population balance model. The stabilizing effect of the polymer and the coalescence characteristics when foam encounters oil were considered. The numerical simulation model was fitted and verified through a one-dimensional displacement experiment. The pressure difference across the sand pack in single foam flooding and polymer-enhanced foam flooding both agree well with the simulation results. Based on the numerical simulation, the foam distribution characteristics in different cases were studied. The results show that there are three zones during foam flooding: the foam growth zone, stable zone, and decay zone. These characteristics are mainly influenced by the adsorption of surfactant, the gas–liquid ratio, the injection rate, and the injection scheme. The oil recovery of polymer-enhanced foam flooding is estimated to be 5.85% more than that of single foam flooding. Moreover, the growth zone and decay zone in three dimensions are considerably wider than in the one-dimensional model. In addition, the slug volume influences the oil recovery the most in the foam enhanced foam flooding, followed by the oil viscosity and gas-liquid ratio. The established model can describe the dynamic change process of foam, and can thus track the foam distribution underground and aid in optimization of the injection strategies during foam flooding.


2001 ◽  
Vol 27 (1) ◽  
pp. 63-71 ◽  
Author(s):  
S Sivakumar ◽  
Manjunath Subbanna ◽  
Satyam S Sahay ◽  
Vijay Ramakrishnan ◽  
P.C Kapur ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document