scholarly journals Computer Aided Detection System for Prediction of the Malaise during Hemodialysis

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Sabina Tangaro ◽  
Annarita Fanizzi ◽  
Nicola Amoroso ◽  
Roberto Corciulo ◽  
Elena Garuccio ◽  
...  

Monitoring of dialysis sessions is crucial as different stress factors can yield suffering or critical situations. Specialized personnel is usually required for the administration of this medical treatment; nevertheless, subjects whose clinical status can be considered stable require different monitoring strategies when compared with subjects with critical clinical conditions. In this case domiciliary treatment or monitoring can substantially improve the quality of life of patients undergoing dialysis. In this work, we present aComputer Aided Detection(CAD) system for the telemonitoring of patients’ clinical parameters. The CAD was mainly designed to predict the insurgence of critical events; it consisted of twoRandom Forest(RF) classifiers: the first one (RF1) predicting the onset of any malaise one hour after the treatment start and the second one (RF2) again two hours later. The developed system shows an accurate classification performance in terms of bothsensitivityandspecificity. Thespecificityin the identification of nonsymptomatic sessions and thesensitivityin the identification of symptomatic sessions forRF2are equal to 86.60% and 71.40%, respectively, thus suggesting the CAD as an effective tool to support expert nephrologists in telemonitoring the patients.

2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Eui Jin Hwang ◽  
Jong Hyuk Lee ◽  
Jae Hyun Kim ◽  
Woo Hyeon Lim ◽  
Jin Mo Goo ◽  
...  

Abstract Background Diagnosis of pneumonia is critical in managing patients with febrile neutropenia (FN), however, chest X-ray (CXR) has limited performance in the detection of pneumonia. We aimed to evaluate the performance of a deep learning-based computer-aided detection (CAD) system in pneumonia detection in the CXRs of consecutive FN patients and investigated whether CAD could improve radiologists’ diagnostic performance when used as a second reader. Methods CXRs of patients with FN (a body temperature ≥ 38.3 °C, or a sustained body temperature ≥ 38.0 °C for an hour; absolute neutrophil count < 500/mm3) obtained between January and December 2017 were consecutively included, from a single tertiary referral hospital. Reference standards for the diagnosis of pneumonia were defined by consensus of two thoracic radiologists after reviewing medical records and CXRs. A commercialized, deep learning-based CAD system was retrospectively applied to detect pulmonary infiltrates on CXRs. For comparing performance, five radiologists independently interpreted CXRs initially without the CAD results (radiologist-alone interpretation), followed by the interpretation with CAD. The sensitivities and specificities for detection of pneumonia were compared between radiologist-alone interpretation and interpretation with CAD. The standalone performance of the CAD was also evaluated, using area under the receiver operating characteristic curve (AUC), sensitivity, and specificity. Moreover, sensitivity and specificity of standalone CAD were compared with those of radiologist-alone interpretation. Results Among 525 CXRs from 413 patients (52.3% men; median age 59 years), pneumonia was diagnosed in 128 (24.4%) CXRs. In the interpretation with CAD, average sensitivity of radiologists was significantly improved (75.4% to 79.4%, P = 0.003) while their specificity remained similar (75.4% to 76.8%, P = 0.101), compared to radiologist-alone interpretation. The CAD exhibited AUC, sensitivity, and specificity of 0.895, 88.3%, and 68.3%, respectively. The standalone CAD exhibited higher sensitivity (86.6% vs. 75.2%, P < 0.001) and lower specificity (64.8% vs. 75.4%, P < 0.001) compared to radiologist-alone interpretation. Conclusions In patients with FN, the deep learning-based CAD system exhibited radiologist-level performance in detecting pneumonia on CXRs and enhanced radiologists’ performance.


2010 ◽  
Vol 61 (3) ◽  
pp. 162-169 ◽  
Author(s):  
Anabel M. Scaranelo ◽  
Pavel Crystal ◽  
Karina Bukhanov ◽  
Thomas H. Helbich

Purpose The purpose of this study was to evaluate the sensitivity of a direct computer-aided detection (CAD) system (d-CAD) in full-field digital mammography (FFDM) for the detection of microcalcifications not associated with mass or architectural distortion. Materials and Methods A database search of 1063 consecutive stereotactic core biopsies performed between 2002 and 2005 identified 196 patients with Breast Imaging-Reporting and Data System (BI-RADS) 4 and 5 microcalcifications not associated with mass or distortion detected exclusively by bilateral FFDM. A commercially available CAD system (Second Look, version 7.2) was retrospectively applied to the craniocaudal and mediolateral oblique views in these patients (mean age, 59 years; range, 35–84 years). Breast density, location and mammographic size of the lesion, distribution, and tumour histology were recorded and analysed by using χ2, Fisher exact, or McNemar tests, when applicable. Results When using d-CAD, 71 of 74 malignant microcalcification cases (96%) and 101 of 122 benign microcalcifications (83%) were identified. There was a significant difference ( P < .05) between CAD sensitivity on the craniocaudal view, 91% (68 of 75), vs CAD sensitivity on the mediolateral oblique view, 80% (60 of 75). The d-CAD sensitivity for dense breast tissue (American College of Radiology [ACR] density 3 and 4) was higher (97%) than d-CAD sensitivity (95%) for nondense tissue (ACR density 1 and 2), but the difference was not statically significant. All 28 malignant calcifications larger than 10 mm were detected by CAD, whereas the sensitivity for lesions small than or equal to 10 mm was 94%. Conclusions D-CAD had a high sensitivity in the depiction of asymptomatic breast cancers, which were seen as microcalcifications on FFDM screening, with a sensitivity of d-CAD on the craniocaudal view being significantly better. All malignant microcalcifications larger than 10 mm were detected by d-CAD.


Radiology ◽  
2005 ◽  
Vol 235 (2) ◽  
pp. 385-390 ◽  
Author(s):  
Jay A. Baker ◽  
Eric L. Rosen ◽  
Michele M. Crockett ◽  
Joseph Y. Lo

Author(s):  
Ammar Chaudhry ◽  
Ammar Chaudhry ◽  
William H. Moore

Purpose: The radiographic diagnosis of lung nodules is associated with low sensitivity and specificity. Computer-aided detection (CAD) system has been shown to have higher accuracy in the detection of lung nodules. The purpose of this study is to assess the effect on sensitivity and specificity when a CAD system is used to review chest radiographs in real-time setting. Methods: Sixty-three patients, including 24 controls, who had chest radiographs and CT within three months were included in this study. Three radiologists were presented chest radiographs without CAD and were asked to mark all lung nodules. Then the radiologists were allowed to see the CAD region-of-interest (ROI) marks and were asked to agree or disagree with the marks. All marks were correlated with CT studies. Results: The mean sensitivity of the three radiologists without CAD was 16.1%, which showed a statistically significant improvement to 22.5% with CAD. The mean specificity of the three radiologists was 52.5% without CAD and decreased to 48.1% with CAD. There was no significant change in the positive predictive value or negative predictive value. Conclusion: The addition of a CAD system to chest radiography interpretation statistically improves the detection of lung nodules without affecting its specificity. Thus suggesting CAD would improve overall detection of lung nodules.


2020 ◽  
Vol 11 ◽  
Author(s):  
Yaoxian Jiang ◽  
Guangyao Yang ◽  
Yuan Liang ◽  
Qin Shi ◽  
Boqi Cui ◽  
...  

PurposeA computer-aided system was used to semiautomatically measure Tönnis angle, Sharp angle, and center-edge (CE) angle using contours of the hip bones to establish an auxiliary measurement model for developmental screening or diagnosis of hip joint disorders.MethodsWe retrospectively analyzed bilateral hip x-rays for 124 patients (41 men and 83 women aged 20–70 years) who presented at the Affiliated Zhongshan Hospital of Dalian University in 2017 and 2018. All images were imported into a computer-aided detection system. After manually outlining hip bone contours, Tönnis angle, Sharp angle, and CE angle marker lines were automatically extracted, and the angles were measured and recorded. An imaging physician also manually measured all angles and recorded hip development, and Pearson correlation coefficients were used to compare computer-aided system measurements with imaging physician measurements. Accuracy for different angles was calculated, and the area under the receiver operating characteristic (AUROC) curve was used to represent the diagnostic efficiency of the computer-aided system.ResultsFor Tönnis angle, Sharp angle, and CE angle, correlation coefficients were 0.902, 0.887, and 0.902, respectively; the accuracies of the computer-aided detection system were 89.1, 93.1, and 82.3%; and the AUROC curve values were 0.940, 0.956, and 0.948.ConclusionThe measurements of Tönnis angle, Sharp angle, and CE angle using the semiautomatic system were highly correlated with the measurements of the imaging physician and can be used to assess hip joint development with high accuracy and diagnostic efficiency.


Sign in / Sign up

Export Citation Format

Share Document