scholarly journals Efficient Parallel Sorting for Migrating Birds Optimization When Solving Machine-Part Cell Formation Problems

2016 ◽  
Vol 2016 ◽  
pp. 1-39 ◽  
Author(s):  
Ricardo Soto ◽  
Broderick Crawford ◽  
Boris Almonacid ◽  
Fernando Paredes

The Machine-Part Cell Formation Problem (MPCFP) is a NP-Hard optimization problem that consists in grouping machines and parts in a set of cells, so that each cell can operate independently and the intercell movements are minimized. This problem has largely been tackled in the literature by using different techniques ranging from classic methods such as linear programming to more modern nature-inspired metaheuristics. In this paper, we present an efficient parallel version of the Migrating Birds Optimization metaheuristic for solving the MPCFP. Migrating Birds Optimization is a population metaheuristic based on the V-Flight formation of the migrating birds, which is proven to be an effective formation in energy saving. This approach is enhanced by the smart incorporation of parallel procedures that notably improve performance of the several sorting processes performed by the metaheuristic. We perform computational experiments on 1080 benchmarks resulting from the combination of 90 well-known MPCFP instances with 12 sorting configurations with and without threads. We illustrate promising results where the proposal is able to reach the global optimum in all instances, while the solving time with respect to a nonparallel approach is notably reduced.

2010 ◽  
Vol 26-28 ◽  
pp. 498-501 ◽  
Author(s):  
Zhu Wang ◽  
Qing Bin Zhang ◽  
Yan Fang Ma ◽  
Jing Zhang ◽  
Yuan Liu

The machine-part cell formation is a NP- complete combinational optimization problem. Past research has shown that although the genetic algorithm (GA) can get high quality solutions, special selection strategy, crossover and mutation operators as well as the parameters must be defined previously to solve the problem efficiently and flexibly. In this paper, an improved permutation code PBIL is adopted to solve the machine-part cell formation problem. Simulation results on five well known problems show that the PBIL can get satisfied solutions more simply and efficiently.


Author(s):  
Yann Poirette ◽  
Martin Guiton ◽  
Guillaume Huwart ◽  
Delphine Sinoquet ◽  
Jean Marc Leroy

IFP Energies nouvelles (IFPEN) is involved for many years in various projects for the development of floating offshore wind turbines. The commercial deployment of such technologies is planned for 2020. The present paper proposes a methodology for the numerical optimization of the inter array cable configuration. To illustrate the potential of such an optimization, results are presented for a case study with a specific floating foundation concept [1]. The optimization study performed aims to define the least expensive configuration satisfying mechanical constraints under extreme environmental conditions. The parameters to be optimized are the total length, the armoring, the stiffener geometry and the buoyancy modules. The insulated electrical conductors and overall sheath are not concerned by this optimization. The simulations are carried out using DeepLines™, a Finite Element software dedicated to simulate offshore floating structures in their marine environment. The optimization problem is solved using an IFPEN in-house tool, which integrates a state of the art derivative-free trust region optimization method extended to nonlinear constrained problems. The latter functionality is essential for this type of optimization problem where nonlinear constraints are introduced such as maximum tension, no compression, maximum curvature and elongation, and the aero-hydrodynamic simulation solver does not provide any gradient information. The optimization tool is able to find various local feasible extrema thanks to a multi-start approach, which leads to several solutions of the cable configuration. The sensitivity to the choice of the initial point is demonstrated, illustrating the complexity of the feasible domain and the resulting difficulty in finding the global optimum configuration.


Author(s):  
Marcus Pettersson ◽  
Johan O¨lvander

Box’s Complex method for direct search has shown promise when applied to simulation based optimization. In direct search methods, like Box’s Complex method, the search starts with a set of points, where each point is a solution to the optimization problem. In the Complex method the number of points must be at least one plus the number of variables. However, in order to avoid premature termination and increase the likelihood of finding the global optimum more points are often used at the expense of the required number of evaluations. The idea in this paper is to gradually remove points during the optimization in order to achieve an adaptive Complex method for more efficient design optimization. The proposed method shows encouraging results when compared to the Complex method with fix number of points and a quasi-Newton method.


2021 ◽  
Vol 12 (4) ◽  
pp. 98-116
Author(s):  
Noureddine Boukhari ◽  
Fatima Debbat ◽  
Nicolas Monmarché ◽  
Mohamed Slimane

Evolution strategies (ES) are a family of strong stochastic methods for global optimization and have proved their capability in avoiding local optima more than other optimization methods. Many researchers have investigated different versions of the original evolution strategy with good results in a variety of optimization problems. However, the convergence rate of the algorithm to the global optimum stays asymptotic. In order to accelerate the convergence rate, a hybrid approach is proposed using the nonlinear simplex method (Nelder-Mead) and an adaptive scheme to control the local search application, and the authors demonstrate that such combination yields significantly better convergence. The new proposed method has been tested on 15 complex benchmark functions and applied to the bi-objective portfolio optimization problem and compared with other state-of-the-art techniques. Experimental results show that the performance is improved by this hybridization in terms of solution eminence and strong convergence.


Author(s):  
K. Kamil ◽  
K.H Chong ◽  
H. Hashim ◽  
S.A. Shaaya

<p>Genetic algorithm is a well-known metaheuristic method to solve optimization problem mimic the natural process of cell reproduction. Having great advantages on solving optimization problem makes this method popular among researchers to improve the performance of simple Genetic Algorithm and apply it in many areas. However, Genetic Algorithm has its own weakness of less diversity which cause premature convergence where the potential answer trapped in its local optimum.  This paper proposed a method Multiple Mitosis Genetic Algorithm to improve the performance of simple Genetic Algorithm to promote high diversity of high-quality individuals by having 3 different steps which are set multiplying factor before the crossover process, conduct multiple mitosis crossover and introduce mini loop in each generation. Results shows that the percentage of great quality individuals improve until 90 percent of total population to find the global optimum.</p>


Sign in / Sign up

Export Citation Format

Share Document