scholarly journals Parameters Optimization for a Kind of Dynamic Vibration Absorber with Negative Stiffness

2016 ◽  
Vol 2016 ◽  
pp. 1-10 ◽  
Author(s):  
Yongjun Shen ◽  
Xiaoran Wang ◽  
Shaopu Yang ◽  
Haijun Xing

A new type of dynamic vibration absorber (DVA) with negative stiffness is studied in detail. At first, the analytical solution of the system is obtained based on the established differential motion equation. Three fixed points are found in the amplitude-frequency curves of the primary system. The design formulae for the optimum tuning ratio and optimum stiffness ratio of DVA are obtained by adjusting the three fixed points to the same height according to the fixed-point theory. Then, the optimum damping ratio is formulated by minimizing the maximum value of the amplitude-frequency curves according toH∞optimization principle. According to the characteristics of negative stiffness element, the optimum negative stiffness ratio is also established and it could still keep the system stable. In the end, the comparison between the analytical and the numerical solutions verifies the correctness of the analytical solution. The comparisons with three other traditional DVAs under the harmonic and random excitations show that the presented DVA performs better in vibration absorption. This result could provide theoretical basis for optimum parameters design of similar DVAs.

2021 ◽  
pp. 107754632110382
Author(s):  
Peng Sui ◽  
Yongjun Shen ◽  
Shaopu Yang ◽  
Junfeng Wang

In the field of dynamics and control, some typical vibration devices, including grounded stiffness, inerter and amplifying mechanism, have good vibration isolation and reduction effects, especially in dynamic vibration absorber (DVA). However, most of the current research studies only focus on the performance of a single device on the system, and those DVAs are gradually becoming difficult to meet the growth of performance demand for vibration control. On the basis of Voigt dynamic vibration absorber, a novel dynamic vibration absorber model based on the combined structure of grounded stiffness, inerter, and amplifying mechanism is presented, and the analytical solution of the optimal design formula is derived. First, the motion differential equation of the system is established, and the normalized amplitude amplification factor of the displacement is calculated. It is found that the system has three fixed points unrelated to the damping ratio. The optimal frequency ratio is obtained based on the fixed-point theory. In order to ensure the stability of the system, it is found that inappropriate inerter coefficient will cause the system instable when screening optimal grounded stiffness ratio. Accordingly, the best working range of inerter is determined. Finally, optimal grounded stiffness ratio and approximate optimal damping ratio are also obtained. The influence of inerter coefficient and magnification ratio on the response of the primary system is analyzed. The correctness of the derived analytical solution is verified by numerical simulation. Compared with other dynamic vibration absorbers, it is verified that presented model has superior vibration absorption performance and provides a theoretical basis for the design of a new type of dynamic vibration absorbers.


Author(s):  
Yan Hao ◽  
Yongjun Shen ◽  
Xianghong Li ◽  
Jun Wang ◽  
Shaopu Yang

The Maxwell model with viscoelastic material and multiple negative stiffness springs is introduced into dynamic vibration absorber system, and all the system parameters are optimized in detail. The analytical solution of the primary system is exhibited according to the established motion differential equation. The dimensionless system parameters, including the optimum natural frequency ratio, the optimum damping ratio and the first optimum negative stiffness ratio of dynamic vibration absorber, are obtained based on H∞ optimization principle and the fixed-point theory. Considering system stability, the other optimum negative stiffness ratio is also determined. Furthermore, by the comparisons of the presented dynamic vibration absorber with other traditional dynamic vibration absorbers, it is found that the dynamic vibration absorber in this paper has better vibration reduction effect in the case of both harmonic and random excitation.


2018 ◽  
Vol 217 ◽  
pp. 01006
Author(s):  
Muhammad Iyad Al-Maliki Saifudin ◽  
Nabil Mohamad Usamah ◽  
Zaidi Mohd Ripin

Motorcycle riders are exposed to hand-transmitted vibration of the hand-arm system due to the vibration of the handle and extended exposure can result in numbness and trembling. One feasible solution to attenuate the handle vibration is by using a dynamic vibration absorber (DVA). In this work a DVA is designed and mounted on the motorcycle handle in order to reduce the vibration at the handle by transferring the vibration from the primary system handle to the secondary mass. Removal of elastomeric material at the DVA mounting locations, symmetry of secondary mass and the direction of DVA attachment influence the vibration absorption. A series of tests conducted show that the vibration on the handle is mainly induced by the engine and there is additional source of vibration from the road surface roughness. Installation of DVA at different locations on the handle resulted in various attenuation levels at different speed in the x and z directions. the attenuation level is between 59-68 % in the biodynamic x-directions for speed at 30-50 kmh-1.


Author(s):  
Haiping Liu ◽  
Dongmei Zhu

In this study, a rail dynamic vibration absorber with negative stiffness is developed to reduce the vibration transmission and radiated noise from the rail components of a ballasted track. The compound models of the ballasted track system with and without the proposed dynamic vibration absorber and a traditional dynamic vibration absorber are constructed. A parametric study is performed to evaluate the effects of the design parameters of the proposed dynamic vibration absorber on the vibration and noise reduction of the track system in terms of the point receptance, the decay rate of rail vibration along the track, and the vibration energy level of the rail. Compared with the traditional dynamic vibration absorber, the proposed counterpart can work effectively over a broad frequency range around resonance. The efficiency of the dynamic vibration absorber can be improved by adjusting the design values of the active mass and damping coefficient. A comparison with the traditional dynamic vibration absorber shows that the vibration and noise suppression capability of the proposed one can be enhanced by increasing the value of the stiffness ratio. However, different from the traditional dynamic vibration absorber, the design parameters of the proposed one can also affect the decay rate and vibration energy at low-frequency regions. A discrete track with the proposed dynamic vibration absorber, which is arranged in continuous or discrete distribution along the rail, is illustrated to study the influences of the rail components on the decay rate and vibration energy level of rails. These calculated results could provide a theoretical basis for the design of the proposed dynamic vibration absorber in controlling the vibration and radiated noise from rails.


2018 ◽  
Vol 56 (5) ◽  
Author(s):  
Nguyen Van Khang

The dynamic vibration absorber (DVA) has been widely applied in various technical fields. This paper presents a  procedure for designing the optimal parameters of  a dynamic vibration absorber attached to a damped primary system. The values of the optimal parameters of the DVA obtained by the Taguchi’s method are compared by the results obtained by other methods. The comparison results show the advantages of the procedure presented in this study


Author(s):  
Tao Fu ◽  
Subhash Rakheja ◽  
Wen-Bin Shangguan

A hybrid proportional electromagnetic dynamic vibration absorber consisting of an electromagnetic actuator and an elastic element is proposed for control of engine vibration during idling. The design of the proportional electromagnetic actuator is realized considering the geometric parameters of the core to achieve nearly constant magnetic force over a broad range of its dynamic displacement but proportional to square of the current. The dynamic characteristics of the electromagnetic dynamic vibration absorber are analyzed analytically and experimentally. The effects of various geometric parameters of the actuator such as the slopes and width/height, and the air gaps on the resulting magnetic force characteristics are evaluated using a finite element model and verified experimentally. A methodology is proposed to achieve magnetic force proportional to current and consistent with the disturbance frequency. The hybrid proportional electromagnetic dynamic vibration absorber is subsequently applied to a single-degree-of-freedom primary system with an acceleration feedback control algorithm for attenuation of primary system vibration in a frequency band around the typical idling vibration frequencies. The effectiveness of the hybrid proportional electromagnetic dynamic vibration absorber is evaluated through simulations and laboratory experiments under harmonic excitations in the 20–30 Hz frequency range. Both the simulation and measurements show that the hybrid proportional electromagnetic dynamic vibration absorber can yield effective attenuation of periodic idling vibration in the frequency range considered.


2019 ◽  
Vol 141 (5) ◽  
Author(s):  
Shaoyi Zhou ◽  
Claire Jean-Mistral ◽  
Simon Chesne

Abstract This paper addresses the optimal design of a novel nontraditional inerter-based dynamic vibration absorber (NTIDVA) installed on an undamped primary system of single degree-of-freedom under harmonic and transient excitations. Our NTIDVA is based on the traditional dynamic vibration absorber (TDVA) with the damper replaced by a grounded inerter-based mechanical network. Closed-form expressions of optimal parameters of NTIDVA are derived according to an extended version of fixed point theory developed in the literature and the stability maximization criterion. The transient response of the primary system is optimized when the coupled system becomes defective, namely having three pairs of coalesced conjugate poles, the proof of which is also spelt out in this paper. Moreover, the analogous relationship between NTIDVA and electromagnetic dynamic vibration absorber is highlighted, facilitating the practical implementation of the proposed absorber. Finally, numerical studies suggest that compared with TDVA, NTIDVA can decrease the peak vibration amplitude of the primary system and enlarge the frequency bandwidth of vibration suppression when optimized by the extended fixed point technique, while the stability maximization criterion shows an improved transient response in terms of larger modal damping ratio and accelerated attenuation rate.


Sign in / Sign up

Export Citation Format

Share Document