scholarly journals Optimal Allocation of Tunnel Safety Provisions Based on a Quantitative Risk Assessment Model

2016 ◽  
Vol 2016 ◽  
pp. 1-5
Author(s):  
Pan Li ◽  
Xiaobo Qu

This paper addresses the issue of optimally selecting the tunnel safety provisions. Tunnel safety provisions are the assets of urban road tunnels which are installed and implemented to reduce the tunnel risks, which are basically selected by expert judgment in practice. An optimization model is proposed to obtain the optimal solution for the selection of tunnel safety provisions. The objective function is to minimize the life cycle costs of tunnel safety provisions, which is subject to the requirements for tunnel safety provisions and the safety targets. Finally, by taking advantage of the special structure of the optimization model, a Bi-Section Search and Bound Algorithm (BSSBA) is designed to efficiently solve the problem.

2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Linjun Lu ◽  
Jian Lu ◽  
Yingying Xing ◽  
Chen Wang ◽  
Fuquan Pan

A large number of traffic tunnel accidents have been reported in China since the 21th century. However, few studies have been reported to analyze traffic accidents that have occurred in urban road tunnels. This study aims to examine the characteristics of the temporal, spatial, and modality distributions of traffic in Shanghai river crossing tunnels using statistical analysis and comparative analysis. Employing these techniques tunnel accident data obtained from Shanghai center 110 was analyzed to determine temporal and spatial distribution characteristics of traffic accidents in river crossing tunnels in Shanghai. The results of this analysis are discussed and summarized in this paper. Identification of the characteristics of tunnel traffic accidents can provide valuable information for development of effective countermeasures to improve tunnel safety in China.


Risk Analysis ◽  
2010 ◽  
Vol 31 (3) ◽  
pp. 382-403 ◽  
Author(s):  
Qiang Meng ◽  
Xiaobo Qu ◽  
Xinchang Wang ◽  
Vivi Yuanita ◽  
Siew Chee Wong

Energies ◽  
2021 ◽  
Vol 14 (4) ◽  
pp. 1173 ◽  
Author(s):  
Maciej Klimas ◽  
Dariusz Grabowski ◽  
Dawid Buła

The paper proposes a solution for the problem of optimizing medium voltage power systems which supply, among others, nonlinear loads. It is focused on decision tree (DT) application for the sizing and allocation of active power filters (APFs), which are the most effective means of power quality improvement. Propositions of some DT strategies followed by the results have been described in the paper. On the basis of an example of a medium-voltage network, an analysis of the selection of the number and allocation of active power filters was carried out in terms of minimizing losses and costs keeping under control voltage total harmonic distortion (THD) coefficients in the network nodes. The presented example shows that decision trees allow for the selection of the optimal solution, depending on assumed limitations, expected effects, and costs.


Author(s):  
Y Suixian ◽  
Y Hong ◽  
G Y Tian

In order to reduce synthesis error, a new approach is reported to select precision points for function synthesis of spherical 4R linkages. Based on a closed-form symbolic solution of the set of function synthesis equations of spherical 4R linkages, the structure error equation has been derived by introducing a scaling factor. After this, an optimization model was constructed to search for the precision points. The initial solution of the optimization model was chosen using a numerical interpolation method. The global optimal solution was obtained using the fractal algorithm. To illustrate this, an example is presented and discussed before finally deriving conclusions.


Methodology ◽  
2018 ◽  
Vol 14 (4) ◽  
pp. 177-188 ◽  
Author(s):  
Martin Schultze ◽  
Michael Eid

Abstract. In the construction of scales intended for the use in cross-cultural studies, the selection of items needs to be guided not only by traditional criteria of item quality, but has to take information about the measurement invariance of the scale into account. We present an approach to automated item selection which depicts the process as a combinatorial optimization problem and aims at finding a scale which fulfils predefined target criteria – such as measurement invariance across cultures. The search for an optimal solution is performed using an adaptation of the [Formula: see text] Ant System algorithm. The approach is illustrated using an application to item selection for a personality scale assuming measurement invariance across multiple countries.


2019 ◽  
Author(s):  
Winda Safitri Caniago ◽  
Hade Afriansyah

Decision making is an action with determine the result in solving problem with choose a rule action between alternative through a mental of process, logic of process and etc. This purpose article is to help make it easier to solve a problem. This article explain some strategy decision making such as optimization model, satisfying model, mixed scanning model, heuristic model, and last the selection of certain model.


2013 ◽  
Vol 19 (3) ◽  
pp. 521-527 ◽  
Author(s):  
Song YANG ◽  
Shuqin WU ◽  
Ningqiu LI ◽  
Cunbin SHI ◽  
Guocheng DENG ◽  
...  

2021 ◽  
Vol 9 (2) ◽  
pp. 152
Author(s):  
Edwar Lujan ◽  
Edmundo Vergara ◽  
Jose Rodriguez-Melquiades ◽  
Miguel Jiménez-Carrión ◽  
Carlos Sabino-Escobar ◽  
...  

This work introduces a fuzzy optimization model, which solves in an integrated way the berth allocation problem (BAP) and the quay crane allocation problem (QCAP). The problem is solved for multiple quays, considering vessels’ imprecise arrival times. The model optimizes the use of the quays. The BAP + QCAP, is a NP-hard (Non-deterministic polynomial-time hardness) combinatorial optimization problem, where the decision to assign available quays for each vessel adds more complexity. The imprecise vessel arrival times and the decision variables—berth and departure times—are represented by triangular fuzzy numbers. The model obtains a robust berthing plan that supports early and late arrivals and also assigns cranes to each berth vessel. The model was implemented in the CPLEX solver (IBM ILOG CPLEX Optimization Studio); obtaining in a short time an optimal solution for very small instances. For medium instances, an undefined behavior was found, where a solution (optimal or not) may be found. For large instances, no solutions were found during the assigned processing time (60 min). Although the model was applied for n = 2 quays, it can be adapted to “n” quays. For medium and large instances, the model must be solved with metaheuristics.


Sign in / Sign up

Export Citation Format

Share Document