scholarly journals Metabolomic Biomarker Identification in Presence of Outliers and Missing Values

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Nishith Kumar ◽  
Md. Aminul Hoque ◽  
Md. Shahjaman ◽  
S. M. Shahinul Islam ◽  
Md. Nurul Haque Mollah

Metabolomics is the sophisticated and high-throughput technology based on the entire set of metabolites which is known as the connector between genotypes and phenotypes. For any phenotypic changes, potential metabolite (biomarker) identification is very important because it provides diagnostic as well as prognostic markers and can help to develop new biomolecular therapy. Biomarker identification from metabolomics data analysis is hampered by the use of high-throughput technology that provides high dimensional data matrix which contains missing values as well as outliers. However, missing value imputation and outliers handling techniques play important role in identifying biomarker correctly. Although several missing value imputation techniques are available, outliers deteriorate the accuracy of imputation as well as the accuracy of biomarker identification. Therefore, in this paper we have proposed a new biomarker identification technique combining the groupwise robust singular value decomposition, t-test, and fold-change approach that can identify biomarkers more correctly from metabolomics dataset. We have also compared the performance of the proposed technique with those of other traditional techniques for biomarker identification using both simulated and real data analysis in absence and presence of outliers. Using our proposed method in hepatocellular carcinoma (HCC) dataset, we have also identified the four upregulated and two downregulated metabolites as potential metabolomic biomarkers for HCC disease.

2018 ◽  
Vol 14 (1) ◽  
pp. 43-52 ◽  
Author(s):  
Nishith Kumar ◽  
Md. Aminul Hoque ◽  
Md. Shahjaman ◽  
S.M. Shahinul Islam ◽  
Md. Nurul Haque Mollah

Background: Metabolomics data generation and quantification are different from other types of molecular “omics” data in bioinformatics. Mass spectrometry (MS) based (gas chromatography mass spectrometry (GC-MS), liquid chromatography mass spectrometry (LC-MS), etc.) metabolomics data frequently contain missing values that make some quantitative analysis complex. Typically metabolomics datasets contain 10% to 20% missing values that originate from several reasons, like analytical, computational as well as biological hazard. Imputation of missing values is a very important and interesting issue for further metabolomics data analysis. </P><P> Objective: This paper introduces a new algorithm for missing value imputation in the presence of outliers for metabolomics data analysis. </P><P> Method: Currently, the most well known missing value imputation techniques in metabolomics data are knearest neighbours (kNN), random forest (RF) and zero imputation. However, these techniques are sensitive to outliers. In this paper, we have proposed an outlier robust missing imputation technique by minimizing twoway empirical mean absolute error (MAE) loss function for imputing missing values in metabolomics data. Results: We have investigated the performance of the proposed missing value imputation technique in a comparison of the other traditional imputation techniques using both simulated and real data analysis in the absence and presence of outliers. Conclusion: Results of both simulated and real data analyses show that the proposed outlier robust missing imputation technique is better performer than the traditional missing imputation methods in both absence and presence of outliers.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Nishith Kumar ◽  
Md. Aminul Hoque ◽  
Masahiro Sugimoto

AbstractMass spectrometry is a modern and sophisticated high-throughput analytical technique that enables large-scale metabolomic analyses. It yields a high-dimensional large-scale matrix (samples × metabolites) of quantified data that often contain missing cells in the data matrix as well as outliers that originate for several reasons, including technical and biological sources. Although several missing data imputation techniques are described in the literature, all conventional existing techniques only solve the missing value problems. They do not relieve the problems of outliers. Therefore, outliers in the dataset decrease the accuracy of the imputation. We developed a new kernel weight function-based proposed missing data imputation technique that resolves the problems of missing values and outliers. We evaluated the performance of the proposed method and other conventional and recently developed missing imputation techniques using both artificially generated data and experimentally measured data analysis in both the absence and presence of different rates of outliers. Performances based on both artificial data and real metabolomics data indicate the superiority of our proposed kernel weight-based missing data imputation technique to the existing alternatives. For user convenience, an R package of the proposed kernel weight-based missing value imputation technique was developed, which is available at https://github.com/NishithPaul/tWLSA.


2014 ◽  
Vol 39 (2) ◽  
pp. 107-127 ◽  
Author(s):  
Artur Matyja ◽  
Krzysztof Siminski

Abstract The missing values are not uncommon in real data sets. The algorithms and methods used for the data analysis of complete data sets cannot always be applied to missing value data. In order to use the existing methods for complete data, the missing value data sets are preprocessed. The other solution to this problem is creation of new algorithms dedicated to missing value data sets. The objective of our research is to compare the preprocessing techniques and specialised algorithms and to find their most advantageous usage.


2017 ◽  
Author(s):  
Runmin Wei ◽  
Jingye Wang ◽  
Mingming Su ◽  
Erik Jia ◽  
Tianlu Chen ◽  
...  

AbstractIntroductionMissing values exist widely in mass-spectrometry (MS) based metabolomics data. Various methods have been applied for handling missing values, but the selection of methods can significantly affect following data analyses and interpretations. According to the definition, there are three types of missing values, missing completely at random (MCAR), missing at random (MAR), and missing not at random (MNAR).ObjectivesThe aim of this study was to comprehensively compare common imputation methods for different types of missing values using two separate metabolomics data sets (977 and 198 serum samples respectively) to propose a strategy to deal with missing values in metabolomics studies.MethodsImputation methods included zero, half minimum (HM), mean, median, random forest (RF), singular value decomposition (SVD), k-nearest neighbors (kNN), and quantile regression imputation of left-censored data (QRILC). Normalized root mean squared error (NRMSE) and NRMSE-based sum of ranks (SOR) were applied to evaluate the imputation accuracy for MCAR/MAR and MNAR correspondingly. Principal component analysis (PCA)/partial least squares (PLS)-Procrustes sum of squared error were used to evaluate the overall sample distribution. Student’s t-test followed by Pearson correlation analysis was conducted to evaluate the effect of imputation on univariate statistical analysis.ResultsOur findings demonstrated that RF imputation performed the best for MCAR/MAR and QRILC was the favored one for MNAR.ConclusionCombining with “modified 80% rule”, we proposed a comprehensive strategy and developed a public-accessible web-tool for missing value imputation in metabolomics data.


2021 ◽  
Author(s):  
Nishith Kumar ◽  
Md. Hoque ◽  
Masahiro Sugimoto

Abstract Mass spectrometry is a modern and sophisticated high-throughput analytical technique that enables large-scale metabolomics analyses. It yields a high dimensional large scale matrix (samples × metabolites) of quantified data that often contain missing cell in the data matrix as well as outliers which originate from several reasons, including technical and biological sources. Although, in the literature, several missing data imputation techniques can be found, however all the conventional existing techniques can only solve the missing value problems but not relieve the problems of outliers. Therefore, outliers in the dataset, deteriorate the accuracy of imputation. To overcome both the missing data imputation and outlier’s problem, here, we developed a new kernel weight function based missing data imputation technique (proposed) that resolves both the missing values and outliers. We evaluated the performance of the proposed method and other nine conventional missing imputation techniques using both artificially generated data and experimentally measured data analysis in both absence and presence of different rates of outliers. Performance based on both artificial data and real metabolomics data indicates that our proposed kernel weight based missing data imputation technique is a better performer than some existing alternatives. For user convenience, an R package of the proposed kernel weight based missing value imputation technique has been developed which is available at https://github.com/NishithPaul/tWLSA .


Author(s):  
Caio Ribeiro ◽  
Alex A. Freitas

AbstractLongitudinal datasets of human ageing studies usually have a high volume of missing data, and one way to handle missing values in a dataset is to replace them with estimations. However, there are many methods to estimate missing values, and no single method is the best for all datasets. In this article, we propose a data-driven missing value imputation approach that performs a feature-wise selection of the best imputation method, using known information in the dataset to rank the five methods we selected, based on their estimation error rates. We evaluated the proposed approach in two sets of experiments: a classifier-independent scenario, where we compared the applicabilities and error rates of each imputation method; and a classifier-dependent scenario, where we compared the predictive accuracy of Random Forest classifiers generated with datasets prepared using each imputation method and a baseline approach of doing no imputation (letting the classification algorithm handle the missing values internally). Based on our results from both sets of experiments, we concluded that the proposed data-driven missing value imputation approach generally resulted in models with more accurate estimations for missing data and better performing classifiers, in longitudinal datasets of human ageing. We also observed that imputation methods devised specifically for longitudinal data had very accurate estimations. This reinforces the idea that using the temporal information intrinsic to longitudinal data is a worthwhile endeavour for machine learning applications, and that can be achieved through the proposed data-driven approach.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Min-Wei Huang ◽  
Wei-Chao Lin ◽  
Chih-Fong Tsai

Many real-world medical datasets contain some proportion of missing (attribute) values. In general, missing value imputation can be performed to solve this problem, which is to provide estimations for the missing values by a reasoning process based on the (complete) observed data. However, if the observed data contain some noisy information or outliers, the estimations of the missing values may not be reliable or may even be quite different from the real values. The aim of this paper is to examine whether a combination of instance selection from the observed data and missing value imputation offers better performance than performing missing value imputation alone. In particular, three instance selection algorithms, DROP3, GA, and IB3, and three imputation algorithms, KNNI, MLP, and SVM, are used in order to find out the best combination. The experimental results show that that performing instance selection can have a positive impact on missing value imputation over the numerical data type of medical datasets, and specific combinations of instance selection and imputation methods can improve the imputation results over the mixed data type of medical datasets. However, instance selection does not have a definitely positive impact on the imputation result for categorical medical datasets.


Author(s):  
Jesmeen Mohd Zebaral Hoque ◽  
Jakir Hossen ◽  
Shohel Sayeed ◽  
Chy. Mohammed Tawsif K. ◽  
Jaya Ganesan ◽  
...  

Recently, the industry of healthcare started generating a large volume of datasets. If hospitals can employ the data, they could easily predict the outcomes and provide better treatments at early stages with low cost. Here, data analytics (DA) was used to make correct decisions through proper analysis and prediction. However, inappropriate data may lead to flawed analysis and thus yield unacceptable conclusions. Hence, transforming the improper data from the entire data set into useful data is essential. Machine learning (ML) technique was used to overcome the issues due to incomplete data. A new architecture, automatic missing value imputation (AMVI) was developed to predict missing values in the dataset, including data sampling and feature selection. Four prediction models (i.e., logistic regression, support vector machine (SVM), AdaBoost, and random forest algorithms) were selected from the well-known classification. The complete AMVI architecture performance was evaluated using a structured data set obtained from the UCI repository. Accuracy of around 90% was achieved. It was also confirmed from cross-validation that the trained ML model is suitable and not over-fitted. This trained model is developed based on the dataset, which is not dependent on a specific environment. It will train and obtain the outperformed model depending on the data available.


2022 ◽  
Vol 9 (3) ◽  
pp. 0-0

Missing data is universal complexity for most part of the research fields which introduces the part of uncertainty into data analysis. We can take place due to many types of motives such as samples mishandling, unable to collect an observation, measurement errors, aberrant value deleted, or merely be short of study. The nourishment area is not an exemption to the difficulty of data missing. Most frequently, this difficulty is determined by manipulative means or medians from the existing datasets which need improvements. The paper proposed hybrid schemes of MICE and ANN known as extended ANN to search and analyze the missing values and perform imputations in the given dataset. The proposed mechanism is efficiently able to analyze the blank entries and fill them with proper examining their neighboring records in order to improve the accuracy of the dataset. In order to validate the proposed scheme, the extended ANN is further compared against various recent algorithms or mechanisms to analyze the efficiency as well as the accuracy of the results.


Sign in / Sign up

Export Citation Format

Share Document