scholarly journals Automatic missing value imputation for cleaning phase of diabetic’s readmission prediction model

Author(s):  
Jesmeen Mohd Zebaral Hoque ◽  
Jakir Hossen ◽  
Shohel Sayeed ◽  
Chy. Mohammed Tawsif K. ◽  
Jaya Ganesan ◽  
...  

Recently, the industry of healthcare started generating a large volume of datasets. If hospitals can employ the data, they could easily predict the outcomes and provide better treatments at early stages with low cost. Here, data analytics (DA) was used to make correct decisions through proper analysis and prediction. However, inappropriate data may lead to flawed analysis and thus yield unacceptable conclusions. Hence, transforming the improper data from the entire data set into useful data is essential. Machine learning (ML) technique was used to overcome the issues due to incomplete data. A new architecture, automatic missing value imputation (AMVI) was developed to predict missing values in the dataset, including data sampling and feature selection. Four prediction models (i.e., logistic regression, support vector machine (SVM), AdaBoost, and random forest algorithms) were selected from the well-known classification. The complete AMVI architecture performance was evaluated using a structured data set obtained from the UCI repository. Accuracy of around 90% was achieved. It was also confirmed from cross-validation that the trained ML model is suitable and not over-fitted. This trained model is developed based on the dataset, which is not dependent on a specific environment. It will train and obtain the outperformed model depending on the data available.

2021 ◽  
Vol 8 (1) ◽  
Author(s):  
Heru Nugroho ◽  
Nugraha Priya Utama ◽  
Kridanto Surendro

AbstractA missing value is one of the factors that often cause incomplete data in almost all studies, even those that are well-designed and controlled. It can also decrease a study’s statistical power or result in inaccurate estimations and conclusions. Hence, data normalization and missing value handling are considered the major problems in the data pre-processing stage, while classification algorithms are adopted to handle numerical features. In cases where the observed data contained outliers, the missing value estimated results are sometimes unreliable or even differ greatly from the true values. Therefore, this study aims to propose the combination of normalization and outlier removals before imputing missing values on the class center-based firefly algorithm method (ON  +  C3FA). Moreover, some standard imputation techniques like mean, a random value, regression, as well as multiple imputation, KNN imputation, and decision tree (DT)-based missing value imputation were utilized as a comparison of the proposed method. Experimental results on the sonar dataset showed normalization and outlier removals effect in the methods. According to the proposed method (ON  +  C3FA), AUC, accuracy, F1-Score, Precision, Recall, and AUC-PR had 0.972, 0.906, 0.906, 0.908, 0.906, 0.61 respectively. The result showed combining normalization and outlier removals in C3-FA (ON  +  C3FA) was an efficient technique for obtaining actual data in handling missing values, and it also outperformed the previous studies methods with r and RMSE values of 0.935 and 0.02. Meanwhile, the Dks value obtained from this technique was 0.04, which indicated that it could maintain the values or distribution accuracy.


2019 ◽  
Vol 21 (9) ◽  
pp. 662-669 ◽  
Author(s):  
Junnan Zhao ◽  
Lu Zhu ◽  
Weineng Zhou ◽  
Lingfeng Yin ◽  
Yuchen Wang ◽  
...  

Background: Thrombin is the central protease of the vertebrate blood coagulation cascade, which is closely related to cardiovascular diseases. The inhibitory constant Ki is the most significant property of thrombin inhibitors. Method: This study was carried out to predict Ki values of thrombin inhibitors based on a large data set by using machine learning methods. Taking advantage of finding non-intuitive regularities on high-dimensional datasets, machine learning can be used to build effective predictive models. A total of 6554 descriptors for each compound were collected and an efficient descriptor selection method was chosen to find the appropriate descriptors. Four different methods including multiple linear regression (MLR), K Nearest Neighbors (KNN), Gradient Boosting Regression Tree (GBRT) and Support Vector Machine (SVM) were implemented to build prediction models with these selected descriptors. Results: The SVM model was the best one among these methods with R2=0.84, MSE=0.55 for the training set and R2=0.83, MSE=0.56 for the test set. Several validation methods such as yrandomization test and applicability domain evaluation, were adopted to assess the robustness and generalization ability of the model. The final model shows excellent stability and predictive ability and can be employed for rapid estimation of the inhibitory constant, which is full of help for designing novel thrombin inhibitors.


1997 ◽  
Vol 08 (03) ◽  
pp. 301-315 ◽  
Author(s):  
Marcel J. Nijman ◽  
Hilbert J. Kappen

A Radial Basis Boltzmann Machine (RBBM) is a specialized Boltzmann Machine architecture that combines feed-forward mapping with probability estimation in the input space, and for which very efficient learning rules exist. The hidden representation of the network displays symmetry breaking as a function of the noise in the dynamics. Thus, generalization can be studied as a function of the noise in the neuron dynamics instead of as a function of the number of hidden units. We show that the RBBM can be seen as an elegant alternative of k-nearest neighbor, leading to comparable performance without the need to store all data. We show that the RBBM has good classification performance compared to the MLP. The main advantage of the RBBM is that simultaneously with the input-output mapping, a model of the input space is obtained which can be used for learning with missing values. We derive learning rules for the case of incomplete data, and show that they perform better on incomplete data than the traditional learning rules on a 'repaired' data set.


Author(s):  
Caio Ribeiro ◽  
Alex A. Freitas

AbstractLongitudinal datasets of human ageing studies usually have a high volume of missing data, and one way to handle missing values in a dataset is to replace them with estimations. However, there are many methods to estimate missing values, and no single method is the best for all datasets. In this article, we propose a data-driven missing value imputation approach that performs a feature-wise selection of the best imputation method, using known information in the dataset to rank the five methods we selected, based on their estimation error rates. We evaluated the proposed approach in two sets of experiments: a classifier-independent scenario, where we compared the applicabilities and error rates of each imputation method; and a classifier-dependent scenario, where we compared the predictive accuracy of Random Forest classifiers generated with datasets prepared using each imputation method and a baseline approach of doing no imputation (letting the classification algorithm handle the missing values internally). Based on our results from both sets of experiments, we concluded that the proposed data-driven missing value imputation approach generally resulted in models with more accurate estimations for missing data and better performing classifiers, in longitudinal datasets of human ageing. We also observed that imputation methods devised specifically for longitudinal data had very accurate estimations. This reinforces the idea that using the temporal information intrinsic to longitudinal data is a worthwhile endeavour for machine learning applications, and that can be achieved through the proposed data-driven approach.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Tressy Thomas ◽  
Enayat Rajabi

PurposeThe primary aim of this study is to review the studies from different dimensions including type of methods, experimentation setup and evaluation metrics used in the novel approaches proposed for data imputation, particularly in the machine learning (ML) area. This ultimately provides an understanding about how well the proposed framework is evaluated and what type and ratio of missingness are addressed in the proposals. The review questions in this study are (1) what are the ML-based imputation methods studied and proposed during 2010–2020? (2) How the experimentation setup, characteristics of data sets and missingness are employed in these studies? (3) What metrics were used for the evaluation of imputation method?Design/methodology/approachThe review process went through the standard identification, screening and selection process. The initial search on electronic databases for missing value imputation (MVI) based on ML algorithms returned a large number of papers totaling at 2,883. Most of the papers at this stage were not exactly an MVI technique relevant to this study. The literature reviews are first scanned in the title for relevancy, and 306 literature reviews were identified as appropriate. Upon reviewing the abstract text, 151 literature reviews that are not eligible for this study are dropped. This resulted in 155 research papers suitable for full-text review. From this, 117 papers are used in assessment of the review questions.FindingsThis study shows that clustering- and instance-based algorithms are the most proposed MVI methods. Percentage of correct prediction (PCP) and root mean square error (RMSE) are most used evaluation metrics in these studies. For experimentation, majority of the studies sourced the data sets from publicly available data set repositories. A common approach is that the complete data set is set as baseline to evaluate the effectiveness of imputation on the test data sets with artificially induced missingness. The data set size and missingness ratio varied across the experimentations, while missing datatype and mechanism are pertaining to the capability of imputation. Computational expense is a concern, and experimentation using large data sets appears to be a challenge.Originality/valueIt is understood from the review that there is no single universal solution to missing data problem. Variants of ML approaches work well with the missingness based on the characteristics of the data set. Most of the methods reviewed lack generalization with regard to applicability. Another concern related to applicability is the complexity of the formulation and implementation of the algorithm. Imputations based on k-nearest neighbors (kNN) and clustering algorithms which are simple and easy to implement make it popular across various domains.


2018 ◽  
Author(s):  
Mercy Nyamewaa Asiedu ◽  
Anish Simhal ◽  
Usamah Chaudhary ◽  
Jenna L. Mueller ◽  
Christopher T. Lam ◽  
...  

AbstractGoalIn this work, we propose methods for (1) automatic feature extraction and classification for acetic acid and Lugol’s iodine cervigrams and (2) methods for combining features/diagnosis of different contrasts in cervigrams for improved performance.MethodsWe developed algorithms to pre-process pathology-labeled cervigrams and to extract simple but powerful color and textural-based features. The features were used to train a support vector machine model to classify cervigrams based on corresponding pathology for visual inspection with acetic acid, visual inspection with Lugol’s iodine, and a combination of the two contrasts.ResultsThe proposed framework achieved a sensitivity, specificity, and accuracy of 81.3%, 78.6%, and 80.0%, respectively when used to distinguish cervical intraepithelial neoplasia (CIN+) relative to normal and benign tissues. This is superior to the average values achieved by three expert physicians on the same data set for discriminating normal/benign cases from CIN+ (77% sensitivity, 51% specificity, 63% accuracy).ConclusionThe results suggest that utilizing simple color- and textural-based features from visual inspection with acetic acid and visual inspection with Lugol’s iodine images may provide unbiased automation of cervigrams.SignificanceThis would enable automated, expert-level diagnosis of cervical pre-cancer at the point-of-care.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Min-Wei Huang ◽  
Wei-Chao Lin ◽  
Chih-Fong Tsai

Many real-world medical datasets contain some proportion of missing (attribute) values. In general, missing value imputation can be performed to solve this problem, which is to provide estimations for the missing values by a reasoning process based on the (complete) observed data. However, if the observed data contain some noisy information or outliers, the estimations of the missing values may not be reliable or may even be quite different from the real values. The aim of this paper is to examine whether a combination of instance selection from the observed data and missing value imputation offers better performance than performing missing value imputation alone. In particular, three instance selection algorithms, DROP3, GA, and IB3, and three imputation algorithms, KNNI, MLP, and SVM, are used in order to find out the best combination. The experimental results show that that performing instance selection can have a positive impact on missing value imputation over the numerical data type of medical datasets, and specific combinations of instance selection and imputation methods can improve the imputation results over the mixed data type of medical datasets. However, instance selection does not have a definitely positive impact on the imputation result for categorical medical datasets.


2014 ◽  
Vol 39 (2) ◽  
pp. 107-127 ◽  
Author(s):  
Artur Matyja ◽  
Krzysztof Siminski

Abstract The missing values are not uncommon in real data sets. The algorithms and methods used for the data analysis of complete data sets cannot always be applied to missing value data. In order to use the existing methods for complete data, the missing value data sets are preprocessed. The other solution to this problem is creation of new algorithms dedicated to missing value data sets. The objective of our research is to compare the preprocessing techniques and specialised algorithms and to find their most advantageous usage.


2021 ◽  
Vol 11 ◽  
Author(s):  
Han-Ching Chan ◽  
Amrita Chattopadhyay ◽  
Eric Y. Chuang ◽  
Tzu-Pin Lu

It is difficult to determine which patients with stage I and II colorectal cancer are at high risk of recurrence, qualifying them to undergo adjuvant chemotherapy. In this study, we aimed to determine a gene signature using gene expression data that could successfully identify high risk of recurrence among stage I and II colorectal cancer patients. First, a synthetic minority oversampling technique was used to address the problem of imbalanced data due to rare recurrence events. We then applied a sequential workflow of three methods (significance analysis of microarrays, logistic regression, and recursive feature elimination) to identify genes differentially expressed between patients with and without recurrence. To stabilize the prediction algorithm, we repeated the above processes on 10 subsets by bagging the training data set and then used support vector machine methods to construct the prediction models. The final predictions were determined by majority voting. The 10 models, using 51 differentially expressed genes, successfully predicted a high risk of recurrence within 3 years in the training data set, with a sensitivity of 91.18%. For the validation data sets, the sensitivity of the prediction with samples from two other countries was 80.00% and 91.67%. These prediction models can potentially function as a tool to decide if adjuvant chemotherapy should be administered after surgery for patients with stage I and II colorectal cancer.


2017 ◽  
Author(s):  
Runmin Wei ◽  
Jingye Wang ◽  
Mingming Su ◽  
Erik Jia ◽  
Tianlu Chen ◽  
...  

AbstractIntroductionMissing values exist widely in mass-spectrometry (MS) based metabolomics data. Various methods have been applied for handling missing values, but the selection of methods can significantly affect following data analyses and interpretations. According to the definition, there are three types of missing values, missing completely at random (MCAR), missing at random (MAR), and missing not at random (MNAR).ObjectivesThe aim of this study was to comprehensively compare common imputation methods for different types of missing values using two separate metabolomics data sets (977 and 198 serum samples respectively) to propose a strategy to deal with missing values in metabolomics studies.MethodsImputation methods included zero, half minimum (HM), mean, median, random forest (RF), singular value decomposition (SVD), k-nearest neighbors (kNN), and quantile regression imputation of left-censored data (QRILC). Normalized root mean squared error (NRMSE) and NRMSE-based sum of ranks (SOR) were applied to evaluate the imputation accuracy for MCAR/MAR and MNAR correspondingly. Principal component analysis (PCA)/partial least squares (PLS)-Procrustes sum of squared error were used to evaluate the overall sample distribution. Student’s t-test followed by Pearson correlation analysis was conducted to evaluate the effect of imputation on univariate statistical analysis.ResultsOur findings demonstrated that RF imputation performed the best for MCAR/MAR and QRILC was the favored one for MNAR.ConclusionCombining with “modified 80% rule”, we proposed a comprehensive strategy and developed a public-accessible web-tool for missing value imputation in metabolomics data.


Sign in / Sign up

Export Citation Format

Share Document