scholarly journals Fish Oil Feeding Modulates the Expression of Hepatic MicroRNAs in a Western-Style Diet-Induced Nonalcoholic Fatty Liver Disease Rat Model

2017 ◽  
Vol 2017 ◽  
pp. 1-11 ◽  
Author(s):  
Hualin Wang ◽  
Yang Shao ◽  
Fahu Yuan ◽  
Han Feng ◽  
Na Li ◽  
...  

Nonalcoholic fatty liver disease (NAFLD) is one of the most prevalent chronic liver diseases worldwide. Recent studies have indicated that fish oil supplementation has benefits against NAFLD. Our previous transcriptomic study has validated the effect of fish oil supplementation on altering hepatic gene expression in a NAFLD rat model. In the current study, we examined the effects of fish oil on the expression of hepatic microRNAs. Male Sprague–Dawley rats were fed with a lab chow (CON), high-fat high-cholesterol diet (WD), or WD supplemented with fish oil (FOH), respectively. Small RNAs were extracted from livers for RNA-sequencing. A total of 79 miRNAs were identified as differentially expressed miRNAs (DEMs) between FOH and WD groups, exemplified by rno-miR-29c-3p, rno-miR-30d-5p, rno-miR-33-5p, rno-miR-34a, and rno-miR-328a-3p. Functional annotation of DEMs predicted target genes suggested that the altered hepatic miRNAs contributed to fish oil modification of hepatic lipid metabolism and signaling transduction. Integrative analysis of DEMs and differentially expressed genes suggested that the expression difference of Pcsk9, Insig2, Per3, and Socs1/3 between FOH and WD groups may be due to miRNA modification. Our study reveals that fish oil supplementation alters hepatic expression of miRNAs, which may contribute to fish oil amelioration of NAFLD in rats.

Author(s):  
Takara L Stanley ◽  
Lindsay T Fourman ◽  
Isabel Zheng ◽  
Colin M McClure ◽  
Meghan N Feldpausch ◽  
...  

Abstract Context Growth hormone (GH) and IGF-1 help regulate hepatic glucose and lipid metabolism, and reductions in these hormones may contribute to development of nonalcoholic fatty liver disease (NAFLD). Objective To assess relationships between hepatic expression of IGF1 and IGF-binding proteins (IGFBPs) and measures of glycemia and liver disease in adults with NAFLD. Secondarily to assess effects of GH-releasing hormone (GHRH) on circulating IGFBPs. Design Analysis of data from a randomized clinical trial of GHRH. Setting Two US academic medical centers. Participants Participants were 61 men and women 18 to 70 years of age with HIV-infection, ≥5% hepatic fat fraction, including 39 with RNA-Seq data from liver biopsy. Main Outcome Measures Hepatic steatosis, inflammation, and fibrosis by histopathology and measures of glucose homeostasis. Results Hepatic IGF1 mRNA was significantly lower in individuals with higher steatosis and NAFLD Activity Score (NAS) and was inversely related to glucose parameters, independent of circulating IGF-1. Among the IGFBPs, IGFBP2 and IGFBP4 were lower and IGFBP6 and IGFBP7 (also known as IGFBP-related protein 1) were higher with increasing steatosis. Hepatic IGFBP6 and IGFBP7 mRNA levels were positively associated with NAS. IGFBP7 mRNA increased with increasing fibrosis. Hepatic IGFBP1 mRNA was inversely associated with glycemia and insulin resistance, with opposite relationships present for IGFBP3 and IGFBP7. GHRH increased circulating IGFBP-1 and IGFBP-3, but decreased IGFBP-2 and IGFBP-6. Conclusions These data demonstrate novel relationships of IGF-1 and IGFBPs with NAFLD severity and glucose control, with divergent roles seen for different IGFBPs. Moreover, the data provide new information on the complex effects of GHRH on IGFBPs.


2012 ◽  
Vol 47 (12) ◽  
pp. 1488-1493 ◽  
Author(s):  
Yusuf Yilmaz ◽  
Fatih Eren ◽  
Yasar Colak ◽  
Ebubekir Senates ◽  
Cigdem Ataizi Celikel ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document