scholarly journals Robustness of Dengue Complex Network under Targeted versus Random Attack

Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Hafiz Abid Mahmood Malik ◽  
Faiza Abid ◽  
Mohamed Ridza Wahiddin ◽  
Zeeshan Bhatti

Dengue virus infection is one of those epidemic diseases that require much consideration in order to save the humankind from its unsafe impacts. According to the World Health Organization (WHO), 3.6 billion individuals are at risk because of the dengue virus sickness. Researchers are striving to comprehend the dengue threat. This study is a little commitment to those endeavors. To observe the robustness of the dengue network, we uprooted the links between nodes randomly and targeted by utilizing different centrality measures. The outcomes demonstrated that 5% targeted attack is equivalent to the result of 65% random assault, which showed the topology of this complex network validated a scale-free network instead of random network. Four centrality measures (Degree, Closeness, Betweenness, and Eigenvector) have been ascertained to look for focal hubs. It has been observed through the results in this study that robustness of a node and links depends on topology of the network. The dengue epidemic network presented robust behaviour under random attack, and this network turned out to be more vulnerable when the hubs of higher degree have higher probability to fail. Moreover, representation of this network has been projected, and hub removal impact has been shown on the real map of Gombak (Malaysia).

Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 932
Author(s):  
Yutaka Okabe ◽  
Akira Shudo

Mathematical models of the spread of epidemic diseases are studied, paying special attention to networks. We treat the Susceptible-Infected-Recovered (SIR) model and the Susceptible-Exposed-Infectious-Recovered (SEIR) model described by differential equations. We perform microscopic numerical simulations for corresponding epidemic models on networks. Comparing a random network and a scale-free network for the spread of the infection, we emphasize the role of hubs in a scale-free network. We also present a simple derivation of the exact solution of the SIR model.


2019 ◽  
Vol 25 (3) ◽  
pp. 182
Author(s):  
Hafiz Abid Mahmood Malik ◽  
Faiza Abid ◽  
Nadeem Mahmood ◽  
Mohamed Ridza Wahiddin ◽  
Asif Malik

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Xiuwen Fu ◽  
Yongsheng Yang ◽  
Haiqing Yao

Previous research of wireless sensor networks (WSNs) invulnerability mainly focuses on the static topology, while ignoring the cascading process of the network caused by the dynamic changes of load. Therefore, given the realistic features of WSNs, in this paper we research the invulnerability of WSNs with respect to cascading failures based on the coupled map lattice (CML). The invulnerability and the cascading process of four types of network topologies (i.e., random network, small-world network, homogenous scale-free network, and heterogeneous scale-free network) under various attack schemes (i.e., random attack, max-degree attack, and max-status attack) are investigated, respectively. The simulation results demonstrate that the rise of interference R and coupling coefficient ε will increase the risks of cascading failures. Cascading threshold values Rc and εc exist, where cascading failures will spread to the entire network when R>Rc or ε>εc. When facing a random attack or max-status attack, the network with higher heterogeneity tends to have a stronger invulnerability towards cascading failures. Conversely, when facing a max-degree attack, the network with higher uniformity tends to have a better performance. Besides that, we have also proved that the spreading speed of cascading failures is inversely proportional to the average path length of the network and the increase of average degree k can improve the network invulnerability.


2006 ◽  
Vol 17 (09) ◽  
pp. 1303-1311 ◽  
Author(s):  
SUMIYOSHI ABE ◽  
STEFAN THURNER

The Erdös–Rényi classical random graph is characterized by a fixed linking probability for all pairs of vertices. Here, this concept is generalized by drawing the linking probability from a certain distribution. Such a procedure is found to lead to a static complex network with an arbitrary connectivity distribution. In particular, a scale-free network with the hierarchical organization is constructed without assuming any knowledge about the global linking structure, in contrast to the preferential attachment rule for a growing network. The hierarchical and mixing properties of the static scale-free network thus constructed are studied. The present approach establishes a bridge between a scalar characterization of individual vertices and topology of an emerging complex network. The result may offer a clue for understanding the origin of a few abundance of connectivity distributions in a wide variety of static real-world networks.


Author(s):  
Natarajan Meghanathan

The authors present correlation analysis between the centrality values observed for nodes (a computationally lightweight metric) and the maximal clique size (a computationally hard metric) that each node is part of in complex real-world network graphs. They consider the four common centrality metrics: degree centrality (DegC), eigenvector centrality (EVC), closeness centrality (ClC), and betweenness centrality (BWC). They define the maximal clique size for a node as the size of the largest clique (in terms of the number of constituent nodes) the node is part of. The real-world network graphs studied range from regular random network graphs to scale-free network graphs. The authors observe that the correlation between the centrality value and the maximal clique size for a node increases with increase in the spectral radius ratio for node degree, which is a measure of the variation of the node degree in the network. They observe the degree-based centrality metrics (DegC and EVC) to be relatively better correlated with the maximal clique size compared to the shortest path-based centrality metrics (ClC and BWC).


Author(s):  
Natarajan Meghanathan

We present correlation analysis between the centrality values observed for nodes (a computationally lightweight metric) and the maximal clique size (a computationally hard metric) that each node is part of in complex real-world network graphs. We consider the four common centrality metrics: degree centrality (DegC), eigenvector centrality (EVC), closeness centrality (ClC) and betweenness centrality (BWC). We define the maximal clique size for a node as the size of the largest clique (in terms of the number of constituent nodes) the node is part of. The real-world network graphs studied range from regular random network graphs to scale-free network graphs. We observe that the correlation between the centrality value and the maximal clique size for a node increases with increase in the spectral radius ratio for node degree, which is a measure of the variation of the node degree in the network. We observe the degree-based centrality metrics (DegC and EVC) to be relatively better correlated with the maximal clique size compared to the shortest path-based centrality metrics (ClC and BWC).


2012 ◽  
Vol 54 (1-2) ◽  
pp. 3-22 ◽  
Author(s):  
J. BARTLETT ◽  
M. J. PLANK

AbstractRandom networks were first used to model epidemic dynamics in the 1950s, but in the last decade it has been realized that scale-free networks more accurately represent the network structure of many real-world situations. Here we give an analytical and a Monte Carlo method for approximating the basic reproduction number ${R}_{0} $ of an infectious agent on a network. We investigate how final epidemic size depends on ${R}_{0} $ and on network density in random networks and in scale-free networks with a Pareto exponent of 3. Our results show that: (i) an epidemic on a random network has the same average final size as an epidemic in a well-mixed population with the same value of ${R}_{0} $; (ii) an epidemic on a scale-free network has a larger average final size than in an equivalent well-mixed population if ${R}_{0} \lt 1$, and a smaller average final size than in a well-mixed population if ${R}_{0} \gt 1$; (iii) an epidemic on a scale-free network spreads more rapidly than an epidemic on a random network or in a well-mixed population.


2010 ◽  
Vol 21 (08) ◽  
pp. 1001-1010 ◽  
Author(s):  
BO SHEN ◽  
YUN LIU

We study the dynamics of minority opinion spreading using a proposed simple model, in which the exchange of views between agents is determined by a quantity named confidence scale. To understand what will promote the success of minority, two types of networks, random network and scale-free network are considered in opinion formation. We demonstrate that the heterogeneity of networks is advantageous to the minority and exchanging views between more agents will reduce the opportunity of minority's success. Further, enlarging the degree that agents trust each other, i.e. confidence scale, can increase the probability that opinions of the minority could be accepted by the majority. We also show that the minority in scale-free networks are more sensitive to the change of confidence scale than that in random networks.


Sign in / Sign up

Export Citation Format

Share Document