scholarly journals Microscopic Numerical Simulations of Epidemic Models on Networks

Mathematics ◽  
2021 ◽  
Vol 9 (9) ◽  
pp. 932
Author(s):  
Yutaka Okabe ◽  
Akira Shudo

Mathematical models of the spread of epidemic diseases are studied, paying special attention to networks. We treat the Susceptible-Infected-Recovered (SIR) model and the Susceptible-Exposed-Infectious-Recovered (SEIR) model described by differential equations. We perform microscopic numerical simulations for corresponding epidemic models on networks. Comparing a random network and a scale-free network for the spread of the infection, we emphasize the role of hubs in a scale-free network. We also present a simple derivation of the exact solution of the SIR model.

Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-14 ◽  
Author(s):  
Xiuwen Fu ◽  
Yongsheng Yang ◽  
Haiqing Yao

Previous research of wireless sensor networks (WSNs) invulnerability mainly focuses on the static topology, while ignoring the cascading process of the network caused by the dynamic changes of load. Therefore, given the realistic features of WSNs, in this paper we research the invulnerability of WSNs with respect to cascading failures based on the coupled map lattice (CML). The invulnerability and the cascading process of four types of network topologies (i.e., random network, small-world network, homogenous scale-free network, and heterogeneous scale-free network) under various attack schemes (i.e., random attack, max-degree attack, and max-status attack) are investigated, respectively. The simulation results demonstrate that the rise of interference R and coupling coefficient ε will increase the risks of cascading failures. Cascading threshold values Rc and εc exist, where cascading failures will spread to the entire network when R>Rc or ε>εc. When facing a random attack or max-status attack, the network with higher heterogeneity tends to have a stronger invulnerability towards cascading failures. Conversely, when facing a max-degree attack, the network with higher uniformity tends to have a better performance. Besides that, we have also proved that the spreading speed of cascading failures is inversely proportional to the average path length of the network and the increase of average degree k can improve the network invulnerability.


2012 ◽  
Vol 54 (1-2) ◽  
pp. 3-22 ◽  
Author(s):  
J. BARTLETT ◽  
M. J. PLANK

AbstractRandom networks were first used to model epidemic dynamics in the 1950s, but in the last decade it has been realized that scale-free networks more accurately represent the network structure of many real-world situations. Here we give an analytical and a Monte Carlo method for approximating the basic reproduction number ${R}_{0} $ of an infectious agent on a network. We investigate how final epidemic size depends on ${R}_{0} $ and on network density in random networks and in scale-free networks with a Pareto exponent of 3. Our results show that: (i) an epidemic on a random network has the same average final size as an epidemic in a well-mixed population with the same value of ${R}_{0} $; (ii) an epidemic on a scale-free network has a larger average final size than in an equivalent well-mixed population if ${R}_{0} \lt 1$, and a smaller average final size than in a well-mixed population if ${R}_{0} \gt 1$; (iii) an epidemic on a scale-free network spreads more rapidly than an epidemic on a random network or in a well-mixed population.


2010 ◽  
Vol 21 (08) ◽  
pp. 1001-1010 ◽  
Author(s):  
BO SHEN ◽  
YUN LIU

We study the dynamics of minority opinion spreading using a proposed simple model, in which the exchange of views between agents is determined by a quantity named confidence scale. To understand what will promote the success of minority, two types of networks, random network and scale-free network are considered in opinion formation. We demonstrate that the heterogeneity of networks is advantageous to the minority and exchanging views between more agents will reduce the opportunity of minority's success. Further, enlarging the degree that agents trust each other, i.e. confidence scale, can increase the probability that opinions of the minority could be accepted by the majority. We also show that the minority in scale-free networks are more sensitive to the change of confidence scale than that in random networks.


2008 ◽  
Vol 5 (2) ◽  
Author(s):  
Zhenggang Wang ◽  
Kwok Yip Szeto ◽  
Frederick Chi-Ching Leung

SummaryA theoretical basis for the evaluation of the effciency of quarantine measure is developed in a SIR model with time delay. In this model, the effectiveness of the closure of public places such as schools in disease control, modeled as a high degree node in a social network, is evaluated by considering the effect of the time delay in the identification of the infected. In the context of the SIR model, the relation between the number of infectious individuals who are identified with time delay and then quarantined and those who are not identified and continue spreading the virus are investigated numerically. The social network for the simulation is modeled by a scale free network. Closure measures are applied to those infected nodes with high degrees. The effectiveness of the measure can be controlled by the present value of the critical degree K


2018 ◽  
Author(s):  
Sang-Yoon Kim ◽  
Woochang Lim

We consider a scale-free network of inhibitory Hindmarsh-Rose (HR) bursting neurons, and investigate coupling-induced cluster burst synchronization by varying the average coupling strength J0. For sufficiently small J0, non-cluster desynchronized states exist. However, when passing a critical point , the whole population is segregated into 3 clusters via a constructive role of synaptic inhibition to stimulate dynamical clustering between individual burstings, and thus 3-cluster desynchronized states appear. As J0 is further increased and passes a lower threshold , a transition to 3-cluster burst synchronization occurs due to another constructive role of synaptic inhibition to favor population synchronization. In this case, HR neurons in each cluster exhibit burst synchronization. However, as J0 passes an intermediate threshold , HR neurons begin to make intermittent hoppings between the 3 clusters. Due to the intermittent intercluster hoppings, the 3 clusters are integrated into a single one. In spite of break-up of the 3 clusters, (non-cluster) burst synchronization persists in the whole population, which is well visualized in the raster plot of burst onset times where bursting stripes (composed of burst onset times and indicating burst synchronization) appear successively. With further increase in J0, intercluster hoppings are intensified, and bursting stripes also become smeared more and more due to a destructive role of synaptic inhibition to spoil the burst synchronization. Eventually, when passing a higher threshold a transition to desynchronization occurs via complete overlap between the bursting stripes. Finally, we also investigate the effects of stochastic noise on both 3-cluster burst synchronization and intercluster hoppings.


2018 ◽  
Vol 2018 ◽  
pp. 1-9
Author(s):  
Lifu Wang ◽  
Yali Zhang ◽  
Jingxiao Han ◽  
Zhi Kong

In this paper, the controllability issue of complex network is discussed. A new quantitative index using knowledge of control centrality and condition number is constructed to measure the controllability of given networks. For complex networks with different controllable subspace dimensions, their controllability is mainly determined by the control centrality factor. For the complex networks that have the equal controllable subspace dimension, their different controllability is mostly determined by the condition number of subnetworks’ controllability matrix. Then the effect of this index is analyzed based on simulations on various types of network topologies, such as ER random network, WS small-world network, and BA scale-free network. The results show that the presented index could reflect the holistic controllability of complex networks. Such an endeavour could help us better understand the relationship between controllability and network topology.


2012 ◽  
Vol 26 (28) ◽  
pp. 1250186 ◽  
Author(s):  
HYUN-JOO KIM

We construct the physics concepts network in which the physics concepts is considered as nodes. We find that this network is clearly not a random network but a scale-free network in which the distribution P(k) of the degree k follows a power law, P(k) ~ k-γ with exponent γ ≈ 2.41. The relevance between the physics concepts and the important concepts are studied by measuring the degree, the betweenness centrality, and the relevance strength and we find that the energy concept is most important. Also we find that the relevance strength s(k) as a function of the degree k exhibits a power-law behavior, s(k) ~ kα with the exponent α ≈ 0.15 and s(knn) as a function of the average neighbor's degree knn follows a power-law behavior, [Formula: see text] with the exponent δ ≈ 0.17 for small knn. We also measured the other quantities which describe the topological properties of the network and find that it has the hierarchical property and tree-like patterns.


Author(s):  
Jinlong Ma ◽  
Zhichao Sun ◽  
Yongqiang Zhang ◽  
Xiangyang Xu ◽  
Ruimei Zhao ◽  
...  

In order to study traffic dynamics on multilayer networks, it is of great significance to build a network model which can more exactly reflect the actual network layered structure characteristics. In this paper, a three-layer network model in which two logical layers are mapped on one physical layer is established, and the traffic capacities of three kinds of multilayer networks with different combinations of logical layers are compared. Simulation results show that when the physical layer is the same random network, the network whose logical layers are two random networks has the optimal traffic capacity, the network with one random network and one scale-free network in the logical layers has the better traffic capacity than the network whose logical layers are two scale-free networks.


Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-12 ◽  
Author(s):  
Hafiz Abid Mahmood Malik ◽  
Faiza Abid ◽  
Mohamed Ridza Wahiddin ◽  
Zeeshan Bhatti

Dengue virus infection is one of those epidemic diseases that require much consideration in order to save the humankind from its unsafe impacts. According to the World Health Organization (WHO), 3.6 billion individuals are at risk because of the dengue virus sickness. Researchers are striving to comprehend the dengue threat. This study is a little commitment to those endeavors. To observe the robustness of the dengue network, we uprooted the links between nodes randomly and targeted by utilizing different centrality measures. The outcomes demonstrated that 5% targeted attack is equivalent to the result of 65% random assault, which showed the topology of this complex network validated a scale-free network instead of random network. Four centrality measures (Degree, Closeness, Betweenness, and Eigenvector) have been ascertained to look for focal hubs. It has been observed through the results in this study that robustness of a node and links depends on topology of the network. The dengue epidemic network presented robust behaviour under random attack, and this network turned out to be more vulnerable when the hubs of higher degree have higher probability to fail. Moreover, representation of this network has been projected, and hub removal impact has been shown on the real map of Gombak (Malaysia).


Sign in / Sign up

Export Citation Format

Share Document