scholarly journals Final Machining of Large-Scale Engine Block with Modularized Fixture and Virtual Manufacturing Technologies

2017 ◽  
Vol 2017 ◽  
pp. 1-6 ◽  
Author(s):  
Hong Liu ◽  
Fan Peng ◽  
Yi Liu

This paper addresses the issue of unstable machining quality of large-scale high-precision internal combustion engine block; the key machining technologies of complex thin-wall internal combustion engine block are studied. This dissertation takes the L type engine block that is used as research object; the modular and fast changing fixtures have been designed for machining engine blocks; due to the fact that this kind of engine blocks has different number of cylinders, we establish a model of precision machining scheme based on virtual manufacturing technology and manufacturing method; on this basis, the scheme is applied to the actual production process to verify the feasibility of the program. The research shows that the precision machining scheme established based on virtual manufacturing technology can effectively solve the key machining technology of the engine block, and one purpose of using this method is to improve machining precision and efficiency of the assembly production. This study intends to propose final machining technology project of high-precision products, and this will formulate and gradually perfect a machining process framework for large engine block, which has engineering exploration value to promote machining technology.

2014 ◽  
Vol 7 (5) ◽  
pp. 66-69
Author(s):  
V. V. Postnov ◽  
◽  
S. K. Khadiullin ◽  
S. V. Starovoitov ◽  
L. R. Kilmetova ◽  
...  

2013 ◽  
Vol 422 ◽  
pp. 132-135
Author(s):  
Liang Feng Zhang ◽  
Ji Ming Yi ◽  
Jin Yang

Based on SL1126 internal combustion engine, using development mode based on secondary development with the underlying language (VC++6.0) and large scale software package, we study the overall structure of simulation system of internal combustion engine assembling, and build the parameterized model of internal combustion engine. And then, with the model, we perform transient analysis on the crank-link mechanism of the internal combustion engine via many-body dynamics, getting the life, velocity and change pattern of acceleration of piston. The analysis data can direct the improvement of internal combustion engine.


2001 ◽  
Vol 123 (3) ◽  
pp. 685-692 ◽  
Author(s):  
D. M. W. Hoffman ◽  
D. R. Dowling

In internal combustion engine vibration modeling, it is typically assumed that the vibratory state of the engine does not influence the loads transmitted to the engine block from its moving internal components. This one-way-coupling assumption leads to energy conservation problems and does not account for Coriolis and gyroscopic interactions between the engine block and its rotating and reciprocating internal components. A new seven-degree-of-freedom engine vibration model has been developed that does not utilize this assumption and properly conserves energy. This paper presents time and frequency-domain comparisons of this model to experimental measurements made on an inline six-cylinder heavy-duty Diesel engine running at full load at peak-torque (1200 rpm) and rated (2100 rpm) speeds. The model successfully predicts the overall features of the engine’s vibratory output with model-experiment correlation coefficients as high as 70 percent for vibration frequencies up through third engine order. The results are robust to variations in the model parameters. Predictions are less successful at the detail level and at higher frequencies because of uncertainties in the actual imperfections of the test engine, and because of the influence of unmodeled engine components.


Sensors ◽  
2021 ◽  
Vol 21 (7) ◽  
pp. 2470
Author(s):  
Krzysztof Prażnowski ◽  
Andrzej Bieniek ◽  
Jarosław Mamala ◽  
Adam Deptuła

Internal combustion engines are among the most commonly used propulsion units for drive systems in various industries such as land transportation, maritime transportation, and power generation. Their operation involves a continuous change of technical condition as a result of not only the combustion process but also their operation under conditions of variable load or ambient impact. It is therefore important to monitor the technical condition of internal combustion engines to ensure high performance and reliability over their lifetime. The article presents the test results obtained from incorrect operation of an internal combustion engine as a result of forced failures of the ignition and injection system. On this basis, a multicriteria comparison of the signal analysis of engine block vibrations was made, after the transformation of the signal from the time domain to the frequency domain, by using the induction technique obtained from the operation of decision tree algorithms. For this purpose, the amplitude spectrum in the frequency domain, scaled to absolute values of discretization for which teaching and testing data tables were created for successive harmonics, was determined for the engine block vibration signal being tested. On the basis of the developed algorithm using decision trees, a multicriteria data table was analyzed for which a compatibility path for the analyzed engine block vibration signal is created. In this way, it is confirmed with a specified degree of effectiveness, depending on the point of operation of the engine resulting from its crankshaft speed, that there is a possibility of detecting a preset ignition or injection system malfunction in the technical condition of the internal combustion engine with a probability up to about 72%.


1987 ◽  
Vol 19 (2) ◽  
pp. 277-280
Author(s):  
G. L. Vasil'ev ◽  
N. I. Ivanov ◽  
A. N. Pereyaslavskii

2021 ◽  
Vol 16 (1) ◽  
pp. 90-95
Author(s):  
Il'mas Salahutdinov ◽  
Andrey Gluschenko ◽  
Denis Molochnikov ◽  
Sergey Petryakov ◽  
Ilnar Gayaziev

The research was carried out in order to determine the possibility of assessing the technical condition of an internal combustion engine (ICE) by the value of the total electromotive force (EMF) that occurs in its friction pairs. The contact area of the rubbing parts and the gap between them affects the electrical resistance in contact, and, accordingly, the value of the resulting EMF according to the established dependence. To confirm the theoretical results, studies were carried out on the UMP-417 engine using a developed measuring complex and a manufactured current-collecting device mounted on the output end of the engine crankshaft. With the operating mode corresponding to the speed of the crankshaft 800 min-1, the total value of the EMF in the measurement circuit cylinder liner-engine block-crankshaft-current collector (TSU) was 83...95 mV. At the same time, in the piston–cylinder liner friction pair, it was equal to 37 ... 47 mV, and in the crank mechanism friction pairs - 46...48 mV. The correspondence of the results of the theoretical calculation and bench studies of the values of the EMF value for a real internal combustion engine was: when measured using the Fluke device for the friction unit of the cylinder liner-piston – 62.1 %, for the friction units of the crank mechanism (root neck-connecting rod, connecting rod neck-connecting rod, root neck-engine block) - 15.1 %. When measured by the V1net device, for the cylinder liner – piston friction unit-85.5 %, for the crank mechanism friction units (root neck-connecting rod, connecting rod neck-connecting rod, root necks-engine block) - 93.2 %. The proposed method for determining the state of the engine by the value that occurs in its EMF friction nodes can be used in the technical diagnostics of engines


Author(s):  
В. В. Руденко ◽  
И. В. Калужинов ◽  
Н. А. Андрущенко

The presence in operation of many prototypes of UAVs with propeller propellers, the use of such devices at relatively low altitudes and flight speeds makes the problem of noise reduction from UAVs urgent both from the point of view of acoustic imperceptibility and ecology.The aim of the work is to determine a set of methods that help to reduce the visibility of UAVs in the acoustic range. It is shown that the main source of noise from the UAV on the ground is the power plant, which includes the engine and the propeller. The parameters of the power plants influencing the processes that determine the acoustic signature of the UAV were investigated. A comprehensive analysis of the factors affecting visibility was carried out. The power plants include two-stroke and four-stroke engines, internal combustion and two-blade propellers. The use of silencers on the exhaust of the internal combustion engine was considered. The spectral characteristics of the acoustic fields of the propeller-driven power plants for the operating sample of the UAV "Eco" were obtained. The measurements were carried out in one-third octave and 1/48 octave frequency bands under static conditions. The venue is the KhAI airfield. Note that the propellers that were part of the power plants operated at Reynolds numbers (Re0,75<2*105), which can significantly affect its aerodynamic and acoustic characteristics. It is shown that when choosing a UAV control system, one should take into account the fact that two-stroke piston engines are the dominant source in the noise of propeller-driven control systems in the absence of a hood and mufflers in the intake and exhaust tracts. The use of a four-stroke internal combustion engine significantly reduces the noise of the control system. In the general case, the position of the boundaries of the zone of acoustic visibility of a UAV at the location of the observer is determined by the ratio between the intensity of acoustic radiation perceived by the observer from the UAV and the intensity of sound corresponding to the natural acoustic background and depends on the degree of manifestation of acoustic effects accompanying the propagation of sound in a turbulent atmosphere - the refraction of sound waves. Absorption and dissipation of acoustic energy. The calculation and comparison of the UAV detection range was carried out taking into account the existing natural maskers.The results of experimental studies are presented that allow assessing the degree of acoustic signature of the UAV. A set of measures aimed at reducing the intensity of the acoustic signature of the UAV in various regions of the radiation spectrum has been determined.


Sign in / Sign up

Export Citation Format

Share Document