engine blocks
Recently Published Documents


TOTAL DOCUMENTS

97
(FIVE YEARS 22)

H-INDEX

12
(FIVE YEARS 1)

Polymers ◽  
2021 ◽  
Vol 13 (24) ◽  
pp. 4386
Author(s):  
Wojciech (Voytek) S. Gutowski ◽  
Andrzej K. Błędzki

This paper presents the outcomes of extensive research targeting the development of high-performance alkyd and polyester resins used as binders in mould- and core-making permeable composite materials designated for large-size/complex-shape, heavy alloy-steel and cast-iron castings (0.5 to 50 tonnes): steam turbine casings (e.g., 18K360 condensing turbine), naval engine blocks and heavy machinery. The technology was implemented by Zamech/ALSTON Power. The key issues discussed here are: (1) control of resin crosslinking kinetics; slow or rapid strength development, (2) shelf-life control of pre-mixed composite, (3) improved thermo-mechanical stability; (4) kinetics of gaseous by-product emission. Optimised composite formulations (resins, crosslinkers and catalysts) allow for the flexible control of material properties and mould-/core fabrication, i.e.,: shelf-life: 10–120 min; mould stripping time: 10 min to 24 h; compressive strength: 4–6 MPa (with post-cure: 10–12 MPa); tensile strength: up to 3 MPa (after post-cure). The moulding sands developed achieved thermal resistance temperatures of up to 345 °C, which exceeded that of 280 °C of comparable commercial material. The onset of the thermal decomposition process was 2–3 times longer than that of furan or commercial alkyd/polyester resin. The technology developed allows for the defect-free manufacture of castings (no pinholes) and binder contents minimisation to 1.2–1.5% with quartz and 1.2% with zirconium or chromite sand.


2021 ◽  
Author(s):  
Joshua Stroh ◽  
Dimitry Sediako ◽  
Anthony Lombardi ◽  
Glenn Byczynski ◽  
Mark Reid ◽  
...  

Abstract The cumulative global emissions produced by the automotive industry over the last decade has put a tremendous strain on the environment. Consequently, automotive engineers and manufacturers have been forced to improve the efficiencies of their automobiles which is frequently accomplished by increasing the operating pressure, and therefore temperature, of the combustion engine. Unfortunately, in addition to the rise in operational pressures and temperatures, large tensile residual stresses often accumulate in the cylinder bridges during the casting process of aluminum engine blocks due to the use of cast-in iron cylinder liners, leading to combined stress magnitudes above the strength of the currently used aluminum alloys. Thus, the present study aims to characterize the evolution of residual stress, with application of neutron diffraction, at several critical stages of the manufacturing process of sand-cast aluminum engine blocks that have eliminated the iron cylinder liners from the casting process and replaced them with cylinder bore chills that are pressed-out after the thermal sand reclamation process. The replacement of the iron liners shifted the stress mode from purely tension to purely compression until the bore chills were removed. Following removal of the bore chills, the maximum tensile stress at the top of the cylinder bridge was ~70% lower than the engine’s predecessor which was produced with iron liners. Moreover, in the production-ready state (i.e., T7 heat treated, machined and press-fit liners inserted), the stress mode maintains the partially compressive nature with low magnitudes of tension, thereby lowering the material’s susceptibility to crack growth and propagation.


2021 ◽  
Author(s):  
Anthony Lombardi

Lightweighting has become an important factor in the automotive industry due to stringent government regulations on fuel consumption and increased environmental awareness. Aluminum alloys are 65% lighter than cast iron enabling significant weight reduction. However, there are several significant challenges associated to the use of hypoeutectic Al-Si alloys in engine block applications. This dissertation investigated the factors influencing the susceptibility of in-service cylinder distortion as it is deleterious to engine operating efficiency, leading to environmental (increased carbon emissions) and economic (expensive recalls) repercussions. The initial segment of this dissertation sought to quantitatively confirm the cause of cylinder distortion by investigating distorted and undistorted service tested engine blocks. This analysis involved measurement of macro-distortion using a co-ordinate measuring machine, in-depth microstructural analysis, measurement of tensile properties, and residual stress mapping along the length of the cylinder bores (neutron diffraction). Upon determining the cause of distortion, the second phase of this project optimized the solution heat treatment parameters to mitigate future distortion in the engine blocks. This optimization was carried out by varying heat treatment parameters to maximize engine block strength. In addition, a pioneering application of in-situ neutron diffraction, along with a unique engine heating system, was used to develop a time-dependent correlation of residual stress relief during heat treatment, assisting in process optimization. The results indicate that the distorted engine block had high tensile residual stress, specifically at cylinder depths greater than 30 mm, while the undistorted block had mainly compressive stress. The maximum distortion occurred near the center portion of the cylinder (~60 mm), which had a combination of coarse microstructure (lower strength) and high tensile residual stress. As such,distortion can be prevented via maximization of strength and reduction in tensile residual stress. Lab scale castings and in-situ neutron diffraction were used to successfully develop an optimal heat treatment process to increase engine block integrity. These experiments found that solution heat treatment at 500 °C for 2 h increased tensile yield strength by 15-20% over engines produced using the current process. Furthermore, tensile residual stress was completely relieved by this heat treatment, reducing the susceptibility to in-service distortion. Solutionizing at temperatures above 500 °C was deemed unsuitable for engine block production due to incipient melting, which deteriorates strength.


2021 ◽  
Author(s):  
Anthony Lombardi

This study investigates the potential factors which may cause cylinder bore distortion in V6 aluminum engine block with cast-in gray iron liners. In this research, the microstructure, mechanical properties and residual stress of 319 type aluminum alloy engine blocks were analyzed from top to bottom along the interbore regions in the TSR, T7 heat treated and service (dyno) tested conditions. The results suggest that the cooling rate increased significantly along the cylinder in the vicinity of the chill plate at the bottom of the engine block. This caused a significant refinement in the microstructure which increased the hardness and tensile strength at the bottom of the cylinder relative to the top. The increased strength at the bottom of the cylinder prevented the rapid relief of residual stress at elevated temperature, which suggests that the bottom of the cylinder is less susceptible to cylinder distortion.


2021 ◽  
Author(s):  
Anthony Lombardi

This study investigates the potential factors which may cause cylinder bore distortion in V6 aluminum engine block with cast-in gray iron liners. In this research, the microstructure, mechanical properties and residual stress of 319 type aluminum alloy engine blocks were analyzed from top to bottom along the interbore regions in the TSR, T7 heat treated and service (dyno) tested conditions. The results suggest that the cooling rate increased significantly along the cylinder in the vicinity of the chill plate at the bottom of the engine block. This caused a significant refinement in the microstructure which increased the hardness and tensile strength at the bottom of the cylinder relative to the top. The increased strength at the bottom of the cylinder prevented the rapid relief of residual stress at elevated temperature, which suggests that the bottom of the cylinder is less susceptible to cylinder distortion.


2021 ◽  
Author(s):  
Anthony Lombardi

Lightweighting has become an important factor in the automotive industry due to stringent government regulations on fuel consumption and increased environmental awareness. Aluminum alloys are 65% lighter than cast iron enabling significant weight reduction. However, there are several significant challenges associated to the use of hypoeutectic Al-Si alloys in engine block applications. This dissertation investigated the factors influencing the susceptibility of in-service cylinder distortion as it is deleterious to engine operating efficiency, leading to environmental (increased carbon emissions) and economic (expensive recalls) repercussions. The initial segment of this dissertation sought to quantitatively confirm the cause of cylinder distortion by investigating distorted and undistorted service tested engine blocks. This analysis involved measurement of macro-distortion using a co-ordinate measuring machine, in-depth microstructural analysis, measurement of tensile properties, and residual stress mapping along the length of the cylinder bores (neutron diffraction). Upon determining the cause of distortion, the second phase of this project optimized the solution heat treatment parameters to mitigate future distortion in the engine blocks. This optimization was carried out by varying heat treatment parameters to maximize engine block strength. In addition, a pioneering application of in-situ neutron diffraction, along with a unique engine heating system, was used to develop a time-dependent correlation of residual stress relief during heat treatment, assisting in process optimization. The results indicate that the distorted engine block had high tensile residual stress, specifically at cylinder depths greater than 30 mm, while the undistorted block had mainly compressive stress. The maximum distortion occurred near the center portion of the cylinder (~60 mm), which had a combination of coarse microstructure (lower strength) and high tensile residual stress. As such,distortion can be prevented via maximization of strength and reduction in tensile residual stress. Lab scale castings and in-situ neutron diffraction were used to successfully develop an optimal heat treatment process to increase engine block integrity. These experiments found that solution heat treatment at 500 °C for 2 h increased tensile yield strength by 15-20% over engines produced using the current process. Furthermore, tensile residual stress was completely relieved by this heat treatment, reducing the susceptibility to in-service distortion. Solutionizing at temperatures above 500 °C was deemed unsuitable for engine block production due to incipient melting, which deteriorates strength.


2020 ◽  
Author(s):  
Serageldin Salem Mohamed ◽  
Agnes M. Samuel ◽  
Herbert W. Doty ◽  
Salvador Valtierra ◽  
Fawzy H. Samuel

There is direct proportionality between ultimate tensile stress (UTS) and residual stresses (RS). Residual stresses gradually decrease with decreasing cooling/quenching rates. Quenching in cold water develops highest, whereas air cooling produces lowest, residual stresses. Significant increase in RS is observed in specimens with low dendrite arm spacing (high solidification rate), while lower residual stresses are measured in specimens with high dendrite arm spacing (low solidification rate). For I-4 and V-6 engine blocks, there is refinement in microstructure due to the increase in solidification rate along the cylinder length. The developed residual stresses are normally tensile in both engine types. Air cooling following solution heat treatment produces higher RS compared to warm water and cold water quenching. Solution heat treatment and freezing lead to maximum RS relaxation where 50% of the stresses are reduced after the solution heat treatment step. Aging time and temperature are directly proportional to the residual stresses relaxation. Relaxation of RS also depends on the geometry and size of the workpiece. It should be mentioned here that the I-4 and V-6 cylinder blocks were provided by Nemak-Canada (Windsor-Ontario-Canada). Residual stress measurements technique and procedure are typical of those used by the automotive industry in order to provide reliable data for industrial applications supported by intensive experiments.


Sign in / Sign up

Export Citation Format

Share Document