scholarly journals Acupuncture Stimulation at GB34 Restores MPTP-Induced Neurogenesis Impairment in the Subventricular Zone of Mice

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Hyongjun Jeon ◽  
Sun Ryu ◽  
Dongsoo Kim ◽  
Sungtae Koo ◽  
Ki-Tae Ha ◽  
...  

Adult neurogenesis has recently been considered a new therapeutic paradigm of Parkinson’s disease. In this study, we investigated whether acupuncture restores 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine- (MPTP-) induced impaired neurogenesis in the subventricular zone (SVZ). Male C57BL/6 mice were given 30 mg/kg of MPTP intraperitoneally once a day for 5 days, after which they were intraperitoneally injected with 50 mg/kg of bromodeoxyuridine (BrdU) and given acupuncture stimulation at HT7 or GB34 for 12 consecutive days. Dopaminergic neuronal survival in the nigrostriatal pathway and cell proliferation in the SVZ was then evaluated by immunostaining. MPTP administration induced dopaminergic neuronal death in the nigrostriatal pathway, which was suppressed by acupuncture stimulation at GB34. MPTP administration also suppressed the number of BrdU-positive cells and glial fibrillary acidic protein/BrdU-positive cells and increased the number of doublecortin/BrdU-positive cells in the SVZ, which were restored by acupuncture stimulation at GB34. These results indicate that acupuncture stimulation at GB34 restores MPTP-induced neurogenesis impairment.

2021 ◽  
Vol 22 (14) ◽  
pp. 7664
Author(s):  
Katarzyna Bartkowska ◽  
Krzysztof Turlejski ◽  
Beata Tepper ◽  
Leszek Rychlik ◽  
Peter Vogel ◽  
...  

Shrews are small animals found in many different habitats. Like other mammals, adult neurogenesis occurs in the subventricular zone of the lateral ventricle (SVZ) and the dentate gyrus (DG) of the hippocampal formation. We asked whether the number of new generated cells in shrews depends on their brain size. We examined Crocidura russula and Neomys fodiens, weighing 10–22 g, and Crocidura olivieri and Suncus murinus that weigh three times more. We found that the density of proliferated cells in the SVZ was approximately at the same level in all species. These cells migrated from the SVZ through the rostral migratory stream to the olfactory bulb (OB). In this pathway, a low level of neurogenesis occurred in C. olivieri compared to three other species of shrews. In the DG, the rate of adult neurogenesis was regulated differently. Specifically, the lowest density of newly generated neurons was observed in C. russula, which had a substantial number of new neurons in the OB compared with C. olivieri. We suggest that the number of newly generated neurons in an adult shrew’s brain is independent of the brain size, and molecular mechanisms of neurogenesis appeared to be different in two neurogenic structures.


2006 ◽  
Vol 31 (4) ◽  
pp. 713-722 ◽  
Author(s):  
Jerome Ricard ◽  
Jessica Salinas ◽  
Lissette Garcia ◽  
Daniel J. Liebl

2009 ◽  
Vol 12 (4) ◽  
pp. 399-408 ◽  
Author(s):  
Li-Chun Cheng ◽  
Erika Pastrana ◽  
Masoud Tavazoie ◽  
Fiona Doetsch

Cell Reports ◽  
2018 ◽  
Vol 25 (9) ◽  
pp. 2457-2469.e8 ◽  
Author(s):  
Vera Zywitza ◽  
Aristotelis Misios ◽  
Lena Bunatyan ◽  
Thomas E. Willnow ◽  
Nikolaus Rajewsky

iScience ◽  
2020 ◽  
Vol 23 (12) ◽  
pp. 101784
Author(s):  
Marc-André Mouthon ◽  
Lise Morizur ◽  
Léa Dutour ◽  
Donovan Pineau ◽  
Thierry Kortulewski ◽  
...  

2009 ◽  
Vol 25 (1) ◽  
pp. 25-39 ◽  
Author(s):  
CA Dodd ◽  
BG Klein

The pyrethroid insecticide permethrin and the organophosphate insecticide chlorpyrifos can experimentally produce Parkinson’s disease (PD)-associated changes in the dopaminergic nigrostriatal pathway, short of frank degeneration, although at doses considerably higher than from a likely environmental exposure. The ability of permethrin (200 mg/kg), chlorpyrifos (50 mg/kg), or combined permethrin + chlorpyrifos to facilitate nigrostriatal damage in the 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) (30 mg/kg) C57BL/6 mouse model of PD was investigated in three separate experiments. Tyrosine hydroxylase (TH) and glial fibrillary acidic protein (GFAP) immunohistochemistry assessed nigrostriatal degeneration or nigrostriatal damage more subtle than frank degeneration. Four fields in the dorsolateral caudate-putamen were examined at two rostrocaudal locations. The dopaminergic neurotoxin MPTP decreased striatal TH immunopositive neuropil and increased GFAP immunopositive neuropil. Neither permethrin nor chlorpyrifos, alone or in combination, altered the effects of MPTP upon TH or GFAP immunostaining. Permethrin alone increased striatal GFAP immunopositive neuropil but not when combined with chlorpyrifos treatment. Therefore, combined administration of the two insecticides appeared to protect against an increase in a neuropathological indicator of striatal damage seen with permethrin treatment alone. Differences compared with analysis of entire striatum emphasize the value of varying the topographic focus used to assess nigrostriatal degeneration in studies of insecticides in PD.


2012 ◽  
Vol 528 (2) ◽  
pp. 120-125 ◽  
Author(s):  
Vanessa Douet ◽  
Eri Arikawa-Hirasawa ◽  
Frederic Mercier

Cells ◽  
2019 ◽  
Vol 8 (12) ◽  
pp. 1551 ◽  
Author(s):  
Maria Garcia-Garrote ◽  
Ana Perez-Villalba ◽  
Pablo Garrido-Gil ◽  
German Belenguer ◽  
Juan A. Parga ◽  
...  

The renin–angiotensin system (RAS), and particularly its angiotensin type-2 receptors (AT2), have been classically involved in processes of cell proliferation and maturation during development. However, the potential role of RAS in adult neurogenesis in the ventricular-subventricular zone (V-SVZ) and its aging-related alterations have not been investigated. In the present study, we analyzed the role of major RAS receptors on neurogenesis in the V-SVZ of adult mice and rats. In mice, we showed that the increase in proliferation of cells in this neurogenic niche was induced by activation of AT2 receptors but depended partially on the AT2-dependent antagonism of AT1 receptor expression, which restricted proliferation. Furthermore, we observed a functional dependence of AT2 receptor actions on Mas receptors. In rats, where the levels of the AT1 relative to those of AT2 receptor are much lower, pharmacological inhibition of the AT1 receptor alone was sufficient in increasing AT2 receptor levels and proliferation in the V-SVZ. Our data revealed that interactions between RAS receptors play a major role in the regulation of V-SVZ neurogenesis, particularly in proliferation, generation of neuroblasts, and migration to the olfactory bulb, both in young and aged brains, and suggest potential beneficial effects of RAS modulators on neurogenesis.


Sign in / Sign up

Export Citation Format

Share Document