scholarly journals Enhanced Efficiency of PTB7 : PC61BM Organic Solar Cells by Adding a Low Efficient Polymer Donor

2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Joana Farinhas ◽  
Ricardo Oliveira ◽  
Quirina Ferreira ◽  
Jorge Morgado ◽  
Ana Charas

Ternary blend polymer solar cells combining two electron-donor polymers, poly[4,8-bis[(2-ethylhexyl)oxy]benzo[1,2-b:4,5-b′]dithiophene-2,6-diyl][3-fluoro-2-[(2-ethylhexyl)carbonyl]thieno[3,4-b]thiophenediyl] (PTB7) and poly[2,5-bis(3-dodecylthiophen-2-yl)thieno[3,2-b]thiophene] (pBTTT) and [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM), as electron-acceptor, were fabricated. The power conversion efficiency of the ternary cells was enhanced by 18%, with respect to the reference binary cells, for a blend composition with 25% (wt%) of pBTTT in the polymers content. The optimized device performance was related to the blend morphology, nonrevealing pBTTT aggregates, and improved charge extraction within the device.

2019 ◽  
Vol 28 (1) ◽  
pp. 66-73
Author(s):  
Ismail Borazan ◽  
Ayşe Celik Bedeloğlu ◽  
Ali Demir

In this article, the improvement in electrical performance of poly(3,4-ethylenedioxythiophene)–poly(styrenesulfonate) (PEDOT:PSS) as the transparent electrode doped with different additives (ethylene glycol (EG), isopropyl alcohol) or treatment of sulfuric acid was enhanced that organic solar cells (OSCs) were produced by using poly(3-hexylthiophene-2,5-diyl):[6,6]-phenyl C61 butyric acid methyl ester. OSCs were fabricated by the doped or treated PEDOT:PSS films as transparent electrodes. The photoelectrical measurements were carried out and the effects of doping or treatment were compared. As a result, EG-added PEDOT:PSS electrode showed the best power conversion efficiency value of 1.87% among the PEDOT:PSS anodes.


2017 ◽  
Vol 8 ◽  
pp. 123-133 ◽  
Author(s):  
Fanan Wei ◽  
Ligang Yao ◽  
Fei Lan ◽  
Guangyong Li ◽  
Lianqing Liu

In this paper, polymer solar cells with a tandem structure were investigated and optimized using a multiscale simulation scheme. In the proposed multiscale simulation, multiple aspects – optical calculation, mesoscale simulation, device scale simulation and optimal power conversion efficiency searching modules – were studied together to give an optimal result. Through the simulation work, dependencies of device performance on the tandem structures were clarified by tuning the thickness, donor/acceptor weight ratio as well as the donor–acceptor distribution in both active layers of the two sub-cells. Finally, employing searching algorithms, we optimized the power conversion efficiency of the tandem polymer solar cells and located the optimal device structure parameters. With the proposed multiscale simulation strategy, poly(3-hexylthiophene)/phenyl-C61-butyric acid methyl ester and (poly[2,6-(4,4-bis-(2-ethylhexyl)-4H-cyclopenta[2,1-b;3,4-b]dithiophene)-alt-4,7-(2,1,3-benzothiadiazole)])/phenyl-C61-butyric acid methyl ester based tandem solar cells were simulated and optimized as an example. Two configurations with different sub-cell sequences in the tandem photovoltaic device were tested and compared. The comparison of the simulation results between the two configurations demonstrated that the balance between the two sub-cells is of critical importance for tandem organic photovoltaics to achieve high performance. Consistency between the optimization results and the reported experimental results proved the effectiveness of the proposed simulation scheme.


2016 ◽  
Vol 16 (4) ◽  
pp. 3349-3354 ◽  
Author(s):  
Takanori Otsura ◽  
Emi Nakatsuka ◽  
Takashi Nagase ◽  
Takashi Kobayashi ◽  
Hiroyoshi Naito

The power conversion efficiencies (PCEs) as a function of band gap energies and the lowest unoccupied molecular orbital (LUMO) levels of donor materials are studied in bulk-heterojunction organic solar cells (OSCs) fabricated from donor materials and fullerene acceptors. The PCEs of [6,6]-pheynl-C61-butyric acid methyl ester (PC61BM) and [6,6]-pheynl-C71-butyric acid methyl ester (PC71BM) based OSCs blended with donor materials under the Air Mass 1.5 (AM1.5) spectrum are calculated. In the calculation, the short circuit current densities are determined by band gap energies of donor materials and the open circuit voltages are derived from the difference between the highest occupied molecular orbital (HOMO) levels of donor materials and LUMO levels of PC61BM and PC71BM. The calculation is in good agreement with the experiments. The PCEs under a fluorescent lamp are also calculated. The calculated PCEs of PC71BM based OSCs under a fluorescent lamp are higher than those under the AM1.5 spectrum by a factor of 2. The PCEs of thieno [3,4-b] thiophene and benzodithiophene (PTB7):PC71BM based OSCs are studied under the AM1.5 spectrum and a fluorescent lamp spectrum and are consistent with the calculation.


2010 ◽  
Vol 25 (5) ◽  
pp. 866-870 ◽  
Author(s):  
Eunkyoung Nam ◽  
Mi Ran Moon ◽  
Jungwoo Kim ◽  
Donggeun Jung ◽  
Hyoungsub Kim ◽  
...  

This study examined the performance of poly(3-hexylthiophene-2,5-diyl)(P3HT)- and [6,6]-phenyl C61 butyric acid methyl ester (PCBM)-based organic solar cells (OSCs) with a pyromellitic dianhydride (PMDA) cathode interfacial layer between the active layer and cathode. The effect of inserting the cathode interfacial layer with different thicknesses was investigated. For the OSC samples with a 0.5 nm thick PMDA layer, the power conversion efficiency (PCE) was approximately 2.77% under 100 mW/cm2 (AM1.5) simulated illumination. It was suggested that the PMDA cathode interfacial layer acts as an exciton blocking layer, leading to an enhancement of the OSC performance.


Polymers ◽  
2019 ◽  
Vol 11 (9) ◽  
pp. 1423 ◽  
Author(s):  
Xu ◽  
Saianand ◽  
Roy ◽  
Qiao ◽  
Reza ◽  
...  

A compatible low-bandgap donor polymer (poly[N-90-heptadecanyl-2,7carbazole-alt-3,6-bis(thiophen-5-yl)-2,5-dioctyl-2,5-dihydropyrrolo [3,4] pyrrole-1,4-dione], PCBTDPP) was judicially introduced into the archetypal poly(3-hexylthiophene):[6,6]-phenyl-C61-butyric acid methyl ester (P3HT:PC61BM) photoactive system to fabricate highly efficient ternary based bulk heterojunction polymer solar cells (PSCs). The PCBTDPP ternary-based PSC with optimal loading (0.2 wt.%) displayed outstanding performance with a champion power conversion efficiency (PCE) of 5.28% as compared to the PCE (4.67%) for P3HT:PC61BM-based PSC (reference). The improved PCE for PCBTDPP ternary-based PSC can be mainly attributed to the incorporation of PCBTDPP into P3HT:PC61BM that beneficially improved the optical, morphological, electronic, and photovoltaic (PV) performance. This work instills a rational strategy for identifying components (donor/acceptor (D/A) molecules) with complementary beneficial properties toward fabricating efficient ternary PSCs.


2014 ◽  
Vol 8 (9) ◽  
pp. 716-722 ◽  
Author(s):  
Luyao Lu ◽  
Tao Xu ◽  
Wei Chen ◽  
Erik S. Landry ◽  
Luping Yu

Materials ◽  
2020 ◽  
Vol 13 (12) ◽  
pp. 2723 ◽  
Author(s):  
Sompit Wanwong ◽  
Weradesh Sangkhun ◽  
Pisist Kumnorkaew ◽  
Jatuphorn Wootthikanokkhan

Two boron dipyrromethene (BODIPY) triads, namely BODIPY-1 and BODIPY-2, were synthesized and incorporated with poly-3-hexyl thiophene: (6,6)-phenyl-C61-butyric acid methyl ester (PCBM) P3HT:PCBM. The photovoltaic performance of BODIPY:P3HT:PCBM ternary solar cells was increased, as compared to the control binary solar cells (P3HT:PCBM). The optimized power conversion efficiency (PCE) of BODIPY-1:P3HT:PCBM was improved from 2.22% to 3.43%. The enhancement of PCE was attributed to cascade charge transfer, an improved external quantum efficiency (EQE) with increased short circuit current (Jsc), and more homogeneous morphology in the ternary blend.


2008 ◽  
Vol 8 (12) ◽  
pp. 6247-6252
Author(s):  
Youngkyoo Kim ◽  
Minjung Shin ◽  
Hwajeong Kim

We report polymer solar cells with a polymer blend nanolayer (film) that consists of two electron-donating polymers and one electron-accepting polymer. Regioregular poly(3-hexylthiophene) (P3HT) and poly[2-methoxy-5-(3',7'-dimethyloctyloxy)-1,4-phenylenevinylene] (MDMO-PPV) were employed as electron-donating polymers, whilst poly(9,9-dioctylfluorene-co-benzothiadiazole) (F8BT) was used as an electron-accepting polymer. Two kinds of solvent and film thickness were applied to examine their effect on the device characteristics. Results showed that the device performance was better when p-xylene was used as a solvent, whilst thicker blend films exhibited better power conversion efficiency. A nanohole morphology found in the blend film made using chlorobenzene, compared to the blend film made using p-xylene, was assumed to be responsible for the relatively poor device performance in spite of higher absorption in the longer wavelengths. Still low efficiency of present devices was attributed to the existence of charge blocking resistances in the bulk polymer nanolayer.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Zhizhe Wang ◽  
Chunfu Zhang ◽  
Dazheng Chen ◽  
Shi Tang ◽  
Jincheng Zhang ◽  
...  

ITO-free semitransparent organic solar cells (OSCs) based on MoO3/Ag anodes with poly(3-hexylthiophene) and [6,6]-phenyl-C61-butyric acid methyl ester films as the active layer are investigated in this work. To obtain the optimal transparent (MoO3)/Ag anode, ITO-free reference OSCs are firstly fabricated. The power conversion efficiency (PCE) of 2.71% is obtained for OSCs based on the optimal MoO3(2 nm)/Ag (9 nm) anode, comparable to that of ITO-based reference OSCs (PCE of 2.85%). Then based on MoO3(2 nm)/Ag (9 nm) anode, ITO-free semitransparent OSCs with different thickness combination of Ca and Ag as the cathodes are investigated. It is observed from our results that OSCs with Ca (15 nm)/Ag (15 nm) cathode have the optimal transparency. Meanwhile, the PCE of 1.79% and 0.67% is obtained for illumination from the anode and cathode side, respectively, comparable to that of similar ITO-based semitransparent OSCs (PCE of 1.59% and 0.75% for illumination from the anode and cathode side, resp.) (Sol. Energy Mater. Sol. Cells, 95, pp. 877–880, 2011). The transparency and PCE of ITO-free semitransparent OSCs can be further improved by introducing a light couple layer. The developed method is compatible with various substrates, which is instructive for further research of ITO-free semitransparent OSCs.


Sign in / Sign up

Export Citation Format

Share Document