scholarly journals Drivers’ Interaction with Adaptive Cruise Control on Dry and Snowy Roads with Various Tire-Road Grip Potentials

2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Ioana Koglbauer ◽  
Jürgen Holzinger ◽  
Arno Eichberger ◽  
Cornelia Lex

This study investigates drivers’ interaction with Adaptive Cruise Control (ACC) in different road conditions and identifies areas of improvement. Ninety-six drivers drove with the ACC in a driving simulator showing either a summer scenery and a dry road with high grip potential or a winter scenery with a snowy road and reduced grip potential. The results show that on snowy roads the drivers set in average a lower ACC speed and preferred a larger ACC time gap. Drivers’ workload and effort were higher when using the ACC on snowy as compared to dry roads. Generally, the use of a shorter ACC gap resulted in lower ratings of comfort, safety, and trust and higher ratings of mental workload and effort in both dry and snowy road conditions. The drivers judged that ACC was braking too late and maintained a too short gap to the forward vehicle, especially when the ACC was set to 1 second as compared to a 1.8-second time gap. A future adaptation of ACC’s control strategy to reduced tire-road grip potential would not only improve comfort and user acceptance of the human driver but also increase the potential to react in emergency situations with braking or evasive steering.

CICTP 2014 ◽  
2014 ◽  
Author(s):  
Wei Zhang ◽  
Jian Zhang ◽  
Wei Wang ◽  
Haiyan Gu ◽  
Yongkai Hu

Author(s):  
Mizanur Rahman ◽  
Mashrur Chowdhury ◽  
Kakan Dey ◽  
M. Rafiul Islam ◽  
Taufiquar Khan

A cooperative adaptive cruise control (CACC) system targeted to obtain a high level of user acceptance must replicate the driving experience in each CACC vehicle without compromising the occupant’s comfort. “User acceptance” can be defined as the safety and comfort of the occupant in the CACC vehicle in terms of acceptable vehicle dynamics (i.e., the maximum acceleration or deceleration) and string stability (i.e., the fluctuations in the vehicle’s position, speed, and acceleration). The primary objective of this study was to develop an evaluation framework for the application of a driver car-following behavior model in CACC system design to ensure user acceptance in terms of vehicle dynamics and string stability. The authors adopted two widely used driver car-following behavior models, ( a) the optimum velocity model (OVM) and ( b) the intelligent driver model (IDM), to prove the efficacy of the evaluation framework developed in this research for CACC system design. A platoon of six vehicles was simulated for three traffic flow states (uniform speed, speed with constant acceleration, and speed with constant deceleration) with different acceleration and deceleration rates. The maximum acceleration or deceleration and the sum of the squares of the errors of the follower vehicle speed were measured to evaluate user acceptance in terms of vehicle dynamics and string stability. Analysis of the simulation results revealed that the OVM performed better at modeling a CACC system than did the IDM in terms of acceptable vehicle dynamics and string stability.


Author(s):  
Vaughan W. Inman ◽  
Steven Jackson ◽  
Brian H. Philips

Cooperative Adaptive Cruise Control (CACC) has been proposed as a method to increase highway capacity and possibly enhance safety. Two experiments were conducted in a driving simulator to verify that drivers with CACC would effectively monitor the system’s longitudinal control and override the system in the event that greater braking authority was needed than the system was designed to provide. In the first experiment, the emergency response of drivers with the CACC was compared with that of drivers who manually controlled following distance within a string of vehicles. The CACC group experienced markedly fewer crashes and had longer mean time-to-collision. The second experiment examined whether the CACC safety benefit was the result of the CACC system’s limited automatic braking authority, an auditory alarm, or both. The results suggest that both auto-braking and an auditory alarm are necessary to achieve a crash reduction benefit, although the alarm alone may promote less severe collisions.


2020 ◽  
Vol 115 ◽  
pp. 102617
Author(s):  
Diamantis Manolis ◽  
Anastasia Spiliopoulou ◽  
Foteini Vandorou ◽  
Markos Papageorgiou

Sign in / Sign up

Export Citation Format

Share Document